High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Collection
2.2. Phenotypic and Molecular Techniques
2.3. Whole-Genome Sequencing
2.4. Transferability of Ampicillin Resistance
3. Results and Discussion
3.1. Detection of a Small ST80 VanA-VREfm Outbreak and Other Ampicillin-Resistant Hospital Associated Clones Enriched in Virulence Markers
3.2. Reliability of In Silico Prediction of Phenotypes Based on Genomic Data by Using the ResFinder Webtool
3.3. Identity of Ampicillin-Resistant Strains and Their Resistome, Virulome, and Bacteriocinome between Human Clinical, Animal, and Food Samples
3.4. Transferability of Ampicillin Resistance and Identity of Pbp5-Carrying Genetic Platforms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updates 2018, 40, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.; Pereira, A.P.; Novais, C.; Peixe, L. Multidrug-resistant high-risk Enterococcus faecium clones: Can we really define them? Int. J. Antimicrob. Agents 2021, 57, 106227. [Google Scholar] [CrossRef]
- Van Hal, S.J.; Willems, R.J.L.; Gouliouris, T.; Ballard, S.A.; Coque, T.M.; Hammerum, A.M.; Hegstad, K.; Pinholt, M.; Howden, B.P.; Malhotra-Kumar, S.; et al. The interplay between community and hospital Enterococcus faecium clones within health-care settings: A genomic analysis. Lancet Microbe 2022, 3, E133–E141. [Google Scholar] [CrossRef]
- Freitas, A.R.; Finisterra, L.; Tedim, A.P.; Duarte, B.; Novais, C.; Peixe, L. Linezolid- and Multidrug-Resistant Enterococci in Raw Commercial Dog Food, Europe, 2019–2020. Emerg. Infect. Dis. 2021, 27, 2221–2224. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Alonso, S.; Top, J.; McNally, A.; Puranen, S.; Pesonen, M.; Pensar, J.; Marttinen, P.; Braat, J.C.; Rogers, M.R.C.; van Schaik, W.; et al. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium. mBio 2020, 11, e03284-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouliouris, T.; Raven, K.E.; Moradigaravand, D.; Ludden, C.; Coll, F.; Blane, B.; Naydenova, P.; Horner, C.; Brown, N.M.; Corander, J.; et al. Detection of vancomycin-resistant Enterococcus faecium hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment. Genome Res. 2019, 29, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Gouliouris, T.; Raven, K.E.; Ludden, C.; Blane, B.; Corander, J.; Horner, C.S.; Hernandez-Garcia, J.; Wood, P.; Hadjirin, N.F.; Radakovic, M.; et al. Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom. mBio 2018, 9, e01780-18. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 2020, 10, 3937. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A.; Strong, K.; Cork, S.C.; McAllister, T.A.; Liljebjelke, K.; Zaheer, R.; Checkley, S.L. The Role of Whole Genome Sequencing in the Surveillance of Antimicrobial Resistant Enterococcus spp.: A Scoping Review. Front. Public Health 2021, 9, 599285. [Google Scholar] [CrossRef] [PubMed]
- Committee for Medicinal Products for Veterinary Use (CVMP). Reflection Paper on the Use of Aminopenicillins and Their Beta-Lactamase Inhibitor Combinations in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health; EMA/CVMP/AWP/842786/2015; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziri, R.; Lozano, C.; Said, L.B.; Bellaaj, R.; Boudabous, A.; Slama, K.B.; Torres, C.; Klibi, N. Multidrug-resistant enterococci in the hospital environment: Detection of novel vancomycin-resistant E. faecium clone ST910. J. Infect. Dev. Ctries. 2016, 10, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziri, R.; El Kara, F.; Barguellil, F.; Ouzari, H.I.; El Asli, M.S.; Klibi, N. Vancomycin-Resistant Enterococcus faecium in Tunisia: Emergence of Novel Clones. Microb. Drug Resist. 2019, 25, 469–474. [Google Scholar] [CrossRef]
- Elhani, D.; Klibi, N.; Dziri, R.; Hassan, M.B.; Asli Mohamed, S.; Said, L.B.; Mahjoub, A.; Slama, K.B.; Jemli, B.; Bellaj, R.; et al. vanA-containing E. faecium isolates of clonal complex CC17 in clinical and environmental samples in a Tunisian hospital. Diagn. Microbiol. Infect. Dis. 2014, 79, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Elghaieb, H.; Freitas, A.R.; Abbassi, M.S.; Novais, C.; Zouari, M.; Hassen, A.; Peixe, L. Dispersal of linezolid-resistant enterococci carrying poxtA or optrA in retail meat and food-producing animals from Tunisia. J. Antimicrob. Chemother. 2019, 74, 2865–2869. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Joste, V.; Gydé, E.; Toullec, L.; Courboulès, C.; Talb, Y.; Riverain-Gillet, E.; Pangon, B.; Amara, M.; Patel, R. Enterococcus faecium and Ampicillin Susceptibility Determination: Overestimation of Resistance with Disk Diffusion Method Using 2 Micrograms of Ampicillin? J. Clin. Microbiol. 2019, 57, e01467-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, A.R.; Tedim, A.P.; Novais, C.; Coque, T.M.; Peixe, L. Distribution of putative virulence markers in Enterococcus faecium: Towards a safety profile review. J. Antimicrob. Chemother. 2018, 73, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.; Tedim, A.P.; Francia, M.V.; Jensen, L.B.; Novais, C.; Peixe, L.; Sánchez-Valenzuela, A.; Sundsfjord, A.; Hegstad, K.; Werner, G.; et al. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J. Antimicrob. Chemother. 2016, 71, 3351–3366. [Google Scholar] [CrossRef] [Green Version]
- Tedim, A.P.; Freitas, A.R.; Lanza, V.F.; Novais, C.; Coque, T.M.; Peixe, L. Towards the elucidation of bacteriocins role in shaping the ecology and evolution of Enterococcus faecium. In Proceedings of the 29th European Congress of Clinical Microbiology & Infectious Diseases. (ECCMID 2019), Amsterdam, The Netherlands, 13–16 April 2019; p. 2755. [Google Scholar]
- Novais, C.; Tedim, A.P.; Lanza, V.F.; Freitas, A.R.; Silveira, E.; Escada, R.; Roberts, A.P.; Al-Haroni, M.; Baquero, F.; Peixe, L.; et al. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Front. Microbiol. 2016, 7, 1581. [Google Scholar] [CrossRef]
- Abbassi, M.S.; Znazen, A.; Mahjoubi, F.; Hammami, A.; Hassen, A.B. Emergence of vancomycin-resistant Enterococcus faecium in Sfax: Clinical features and molecular typing. Médecine Et Mal. Infect. 2007, 37, 240–241. [Google Scholar] [CrossRef]
- Alemayehu, T.; Hailemariam, M. Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 20542. [Google Scholar] [CrossRef]
- Freitas, A.R.; Novais, C.; Duarte, B.; Pereira, A.P.; Coque, T.M.; Peixe, L. High rates of colonisation by ampicillin-resistant enterococci in residents of long-term care facilities in Porto, Portugal. Int. J. Antimicrob. Agents 2018, 51, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.; Novais, C.; Tedim, A.P.; Francia, M.V.; Baquero, F.; Peixe, L.; Coque, T.M. Microevolutionary events involving narrow host plasmids influences local fixation of vancomycin-resistance in Enterococcus populations. PLoS ONE 2013, 8, e60589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardal, E.; Kuch, A.; Gawryszewska, I.; Żabicka, D.; Hryniewicz, W.; Sadowy, E. Diversity of plasmids and Tn1546-type transposons among VanA Enterococcus faecium in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 313–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhaj, M.; Boubaker, I.B.-B.; Redjeb, S.B.; Bouchami, O. Molecular characterisation of high-level ampicillin-resistant Enterococcus faecium isolates from hospitalised patients in Tunis. Int. J. Antimicrob. Agents 2008, 32, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Costa, Y.; Galimand, M.; Leclercq, R.; Duval, J.; Courvalin, P. Characterization of the chromosomal aac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 1993, 37, 1896–1903. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. Intrinsic Resistance and Exceptional Phenotypes, Expert Rules. Version 3.2. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2020/Intrinsic_Resistance_and_Unusual_Phenotypes_Tables_v3.2_20200225.pdf (accessed on 18 December 2020).
- De Maat, V.; Arredondo-Alonso, S.; Willems, R.J.L.; van Schaik, W. Conditionally essential genes for survival during starvation in Enterococcus faecium E745. BMC Genom. 2020, 21, 568. [Google Scholar] [CrossRef]
- Almeida-Santos, A.C.; Novais, C.; Peixe, L.; Freitas, A.R. Enterococcus spp. as a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics 2021, 10, 1215. [Google Scholar] [CrossRef]
- Galloway-Peña, J.R.; Rice, L.B.; Murray, B.E. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: Sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob. Agents Chemother. 2011, 55, 3272–3277. [Google Scholar] [CrossRef] [Green Version]
- Darehkordi, H.; Saffari, F.; Mollaei, H.R.; Ahmadrajabi, R. Amino acid substitution mutations and mRNA expression levels of the pbp5 gene in clinical Enterococcus faecium isolates conferring high level ampicillin resistance. Apmis 2019, 127, 115–122. [Google Scholar] [CrossRef]
- Kim, M.H.; Moon, D.C.; Kim, S.-J.; Mechesso, A.F.; Song, H.-J.; Kang, H.Y.; Choi, J.-H.; Yoon, S.-S.; Lim, S.-K. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A. Quantitative human health risk assessments of antimicrobial use in animals and selection of resistance: A review of publicly available reports. Rev. Sci. Tech. 2012, 31, 261–276. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef] [PubMed]
- Montealegre, M.C.; Roh, J.H.; Rae, M.; Davlieva, M.G.; Singh, K.V.; Shamoo, Y.; Murray, B.E. Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrob. Agents Chemother. 2017, 61, e02034-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic Resistance Genes b | Antibiotic Resistance | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolate a | ST | Country (Source) | Date | Mutations | |||||||||||||||||
Aminoglycosides | MLS | Tetracyclines | PLSA | Trim. | GPs | Beta-lact. | Quinolones | ||||||||||||||
aph(3′)-III | ant(6)-Ia | aac(6′)-Ie-aph(2″)-Ia | aph(2′′)-Ia | erm(A) | erm(B) | msr(C) | lnu(B) | tet(M) | tet(L) | tet(S) | tet(O) | lsa(E) | dfrG | vanHAX | pbp5 | gyrA | parC | ||||
342T | 18 | TUN (HP) | 2014 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | Δtet(M) | dfrG | + | |||||||||||
361T | 18 | TUN (RM) | 2016 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | Δtet(M) | dfrG | + | |||||||||||
E20117_2017 | 18 | AUS (E) | 2017 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | lnu(B) | tet(M) | tet(L) | lsa(E) | dfrG | + | ||||||||
E20104_2017 | 18 | AUS (E) | 2017 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | lnu(B) | tet(M) | tet(L) | lsa(E) | dfrG | + | ||||||||
FDAARGOS | 18 | USA (ST) | 2015 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | Δtet(M) | dfrG | + | |||||||||||
E1774_hybrid | 18 | NLD (ST) | 2015 | aph(3′)-III | ant(6)-Ia * | erm(B) | msr(C) | lnu(B) | tet(M) | lsa(E) | dfrG | + | |||||||||
VREN0787 | 18 | UK (TWW) | 2015 | msr(C) * | Δtet(M) | dfrG | + | ||||||||||||||
VREN0458 | 18 | UK (TWW) | 2014 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | Δtet(M) | dfrG | + | |||||||||||
VREN0249 | 18 | UK (UWW) | 2014 | aph(3′)-III | ant(6)-Ia * | erm(B) | msr(C) * | lnu(B) | tet(M) | tet(L) | lsa(E) | dfrG * | + | ||||||||
HC_SS0046 | 18 | CAN (UK) | 2014 | aph(3′)-III | erm(B) | msr(C) | lnu(B) | Δtet(M) * | tet(L) | lsa(E) | dfrG | + | |||||||||
VS119 | 18 | DEN (HP) | 2013 | aph(3′)-III * | ant(6)-Ia * | erm(B) | msr(C) | Δtet(M) | dfrG | + | |||||||||||
NEF1 | 18 | FRA (HP) | 2004 | aph(3′)-III | ant(6)-Ia | Δerm(B) | msr(C) | tet(M) | tet(L) | tet(O) | dfrG | ΔvanHAX | + | ||||||||
UAA1433 | 18 | FRA (HP) | 2000 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | lnu(B) | tet(L) | lsa(E) | dfrG | vanHAX | + | ||||||||
365T | 17 | TUN (RM) | 2016 | aph(3′)-III | ant(6)-Ia | aac(6′)-Ie-aph(2″)-Ia | erm(A) | erm(B) | msr(C) | + | + | + | |||||||||
464T | 17 | TUN (CM) | 2016 | aph(3′)-III | ant(6)-Ia | aac(6′)-Ie-aph(2″)-Ia | erm(A) | erm(B) | msr(C) | + | + | + | |||||||||
465T | 17 | TUN (HP) | 2014 | aph(3′)-III | ant(6)-Ia | aac(6′)-Ie-aph(2″)-Ia | erm(A) | erm(B) | msr(C) | + | + | + | |||||||||
E0048 | 17 | TUN (H) | 2003 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | vanHAX | + | + | + | ||||||||||
BSAC_ec960 | 17 | UK (HP) | 2004 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | vanHAX | + | + | + | ||||||||||
BSAC_ec698 | 17 | UK (HP) | 2003 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | vanHAX | + | + | + | ||||||||||
508T | 203 | TUN (RM) | 2016 | aph(3′)-III | ant(6)-Ia | Δaac(6′)-Ie-aph(2″)-Ia * | Δaph(2′′)-la | erm(B) * | msr(C) | lnu(B) | tet(M) | + | + | + | |||||||
BSAC_ec2441 | 203 | UK (HP) | 2010 | aph(3′)-III | ant(6)-Ia | Δaac(6′)-Ie-aph(2″)-Ia | Δaph(2′′)-la | erm(B) | msr(C) | lnu(B) | tet(M) | + | + | + | |||||||
EC0060 | 203 | UK (HP) | 2007 | aph(3′)-III | ant(6)-Ia * | Δaac(6′)-Ie-aph(2″)-Ia | Δaph(2′′)-la | erm(B) ** | msr(C) | tet(M) | vanHAX | + | + | + | |||||||
349T | 80 | TUN (HP) | 2016 | aph(3′)-III | ant(6)-Ia | aac(6′)-Ie-aph(2″)-Ia | Δerm(B) ** | msr(C) | Δtet(M) | tet(S) | dfrG | vanHAX | + | + | + | ||||||
437T | 18 | TUN (CM) | 2016 | aph(3′)-III | ant(6)-Ia | erm(B) | msr(C) | Δtet(M) | tet(L) | dfrG | + |
Isolate a | Putative Virulence Markers b | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface-Exposed Cell-Wall Anchored Proteins and Miscellaneous | Carbohydrate Metabolism, Regulation, Transport | PGC 1 (fms21-20) | PGC 2 (fms14-fms17-fms13) | PGC 3 (EmpABC) | PGC 4 (fms11-fms19-fms16) | General Stress Proteins | ||||||||||||||||||||||
acm | scm | sgrA | fms15 | ecbAEfm | sagA | fibronectin | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | fms21 | fms20 | fms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | glsB1 | |
342T | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||
361T | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||
E20117_2017 | acm | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||||
E20104_2017 | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||
FDAARGOS | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | Δfms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
E1774_hybrid | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||
VREN0787 | acm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||||
VREN0458 | acm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||||
VREN0249 | acm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||||
HC_SS0046 | acm | scm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||||
VS119 | acm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||||
NEF1 | acm | Δscm | sgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | fms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
UAA1433 | acm | ΔsgrA | Δfms15 | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | Δfms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||
365T | acm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | fms20 | Δfms14 | fms17 | fms13 | ΔebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||
464T | acm | scm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | fms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms20 | fms11 | gls20 | gls33 | glsB | glsB1 | ||
465T | acm | scm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | fms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
E0048 | acm | ΔecbAEfm | sagA | fnm | IS16 | ptsD | orf1482 | ccpA | bepA | hylEfm | Δfms21 | fms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||
BSAC_ec960 | acm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | Δfms21 | Δfms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
BSAC_ec698 | acm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | hylEfm | Δfms21 | Δfms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
508T | acm | Δscm | sgrA | Δfms15 | ecbAEfm | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | fms20 | fms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms17 | fms19 | fms11 | gls20 | gls33 | glsB | ||
BSAC_ec2441 | acm | sgrA | Δfms15 | ecbAEfm | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | Δfms20 | fms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
EC0060 | acm | sgrA | Δfms15 | ecbAEfm | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms20 | fms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB | ||||
349T | acm | scm | sgrA | Δfms15 | sagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | fms20 | fms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | fms16 | fms19 | fms11 | gls20 | gls33 | glsB | |||
437T | acm | Δscm | sgrA | Δfms15 | ecbAEfm | ΔsagA | fnm | IS16 | ptsD | orf1481 | ccpA | bepA | Δfms21 | Δfms20 | Δfms14 | fms17 | fms13 | ebpAEfm | ebpBEfm | ebpCEfm | Δfms16 | fms19 | fms11 | gls20 | gls33 | glsB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, A.R.; Tedim, A.P.; Almeida-Santos, A.C.; Duarte, B.; Elghaieb, H.; Abbassi, M.S.; Hassen, A.; Novais, C.; Peixe, L. High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach. Microorganisms 2022, 10, 632. https://doi.org/10.3390/microorganisms10030632
Freitas AR, Tedim AP, Almeida-Santos AC, Duarte B, Elghaieb H, Abbassi MS, Hassen A, Novais C, Peixe L. High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach. Microorganisms. 2022; 10(3):632. https://doi.org/10.3390/microorganisms10030632
Chicago/Turabian StyleFreitas, Ana R., Ana P. Tedim, Ana C. Almeida-Santos, Bárbara Duarte, Houyem Elghaieb, Mohamed S. Abbassi, Abdennaceur Hassen, Carla Novais, and Luísa Peixe. 2022. "High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach" Microorganisms 10, no. 3: 632. https://doi.org/10.3390/microorganisms10030632
APA StyleFreitas, A. R., Tedim, A. P., Almeida-Santos, A. C., Duarte, B., Elghaieb, H., Abbassi, M. S., Hassen, A., Novais, C., & Peixe, L. (2022). High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach. Microorganisms, 10(3), 632. https://doi.org/10.3390/microorganisms10030632