Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of E. coli
2.2. Antimicrobial Susceptibility
2.3. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance Rate
3.2. Antimicrobial Resistance Trends
3.3. MDR and Antimicrobial Resistance Patterns
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basak Unver, K.; Ahmet, K. Vero-Toxigenic Escherichia coli (VTEC): To sum up all we know. J. Gastroenterol. Res. 2017, 1, 14–23. [Google Scholar] [CrossRef]
- Khalil, I.A.; Troeger, C.; Blacker, B.F.; Rao, P.C.; Brown, A.; Atherly, D.E.; Brewer, T.G.; Engmann, C.M.; Houpt, E.R.; Kang, G. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 2018, 18, 1229–1240. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Yoon, Y. Etiological agents implicated in foodborne illness worldwide. Food Sci. Anim. Resour. 2021, 41, 1. [Google Scholar] [CrossRef]
- Dolejska, M.; Bierošová, B.; Kohoutova, L.; Literak, I.; Čížek, A. Antibiotic-resistant Salmonella and Escherichia coli isolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls. J. Appl. Microbiol. 2009, 106, 1941–1950. [Google Scholar] [CrossRef]
- Abbas, G.; Khan, I.; Mohsin, M. High rates of CTX-M group-1 extended-spectrum β-lactamases producing Escherichia coli from pets and their owners in Faisalabad, Pakistan. Infect. Drug Resist. 2019, 12, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, e05077. [Google Scholar]
- O’Neill, J. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste; The Review on Antimicrobial Resistance: London, UK, 2015; Volume 40. [Google Scholar]
- Geenen, P.; Graat, E.; Haenen, A.; Hengeveld, P.; Van Hoek, A.; Huijsdens, X.; Kappert, C.; Lammers, G.; Van Duijkeren, E.; Van De Giessen, A.; et al. Prevalence of livestock-associated MRSA on Dutch broiler farms and in people living and/or working on these farms. J. Epidemiol. 2013, 141, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-J.; Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, M.H.; Choi, J.-H.; Kim, S.-J.; Yoon, S.-S.; Lim, S.-K. Resistance profiling and molecular characterization of extended-spectrum/plasmid-mediated Ampc β-lactamase-producing Escherichia coli isolated from healthy broiler chickens in South Korea. Microorganisms 2020, 8, 1434. [Google Scholar] [CrossRef]
- Tark, D.-S.; Moon, D.C.; Kang, H.Y.; Kim, S.-R.; Nam, H.-M.; Lee, H.-S.; Jung, S.-C.; Lim, S.-K. Antimicrobial susceptibility and characterization of extended-spectrum β-lactamases in Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. J. Dairy Sci. 2017, 100, 3463–3469. [Google Scholar] [CrossRef]
- Lim, S.-K.; Nam, H.-M.; Moon, D.-C.; Jang, G.-C.; Jung, S.-C. Antimicrobial resistance of Escherichia coli isolated from healthy animals during 2010–2012. Korean J. Vet. Res. 2014, 54, 131–137. [Google Scholar] [CrossRef]
- Kyung-Hyo, D.; Jae-Won, B.; Wan-Kyu, L. Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics 2020, 9, 755. [Google Scholar] [CrossRef]
- Do, K.-H.; Byun, J.-W.; Lee, W.-K. Serogroups, Virulence Genes and Antimicrobial Resistance of F4+ and F18+ Escherichia coli Isolated from Weaned Piglets. Pak. Vet. J. 2019, 39, 266–270. [Google Scholar] [CrossRef]
- Cho, J.; Ha, J.; Kim, K. Antimicrobial drug resistance of Escherichia coli isolated from cattle, swine and chicken. Korean J. Vet. Public Health 2006, 30, 9–18. [Google Scholar]
- Tamang, M.D.; Nam, H.-M.; Kim, S.-R.; Chae, M.H.; Jang, G.-C.; Jung, S.-C.; Lim, S.-K. Prevalence and molecular characterization of CTX-M β-lactamase–producing Escherichia coli isolated from healthy swine and cattle. Foodborne Pathog. Dis. 2013, 10, 13–20. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2018. [Google Scholar]
- FDA. NARMS Integrated Report: 2014—The National Antimicrobial Resistance Monitoring System: Enteric Bacteria; FDA: Silver Spring, MD, USA, 2016.
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; European Society of Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2018. [Google Scholar]
- Astorga, F.; Navarrete-Talloni, M.J.; Miró, M.P.; Bravo, V.; Toro, M.; Blondel, C.J.; Hervé-Claude, L.P. Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. Heliyon 2019, 5, e02773. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Thomas, V.; Simjee, S.; Godinho, K.; Schiessl, B.; Klein, U.; Butty, P.; Vallé, M.; Marion, H.; Shryock, T.R. Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J. Antimicrob. Chemother. 2012, 67, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Wasyl, D.; Hoszowski, A.; Szulowski, K.; Zając, M. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front. Microbiol. 2013, 4, 221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Shen, Z.; Zhang, C.; Song, L.; Wang, B.; Shang, J.; Yue, X.; Qu, Z.; Li, X.; Wu, L. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Vet. Microbiol. 2017, 203, 49–55. [Google Scholar] [CrossRef]
- Ohene Larbi, R.; Ofori, L.A.; Sylverken, A.A.; Ayim-Akonor, M.; Obiri-Danso, K. Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. Int. J. Microbiol. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- EFSA/ECDC. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2012; EFSA: Parma, Italy, 2014; Volume 12, p. 3590.
- Deckert, A.; Gow, S.; Rosengren, L.; Leger, D.; Avery, B.; Daignault, D.; Dutil, L.; Reid-Smith, R.; Irwin, R. Canadian integrated program for antimicrobial resistance surveillance (CIPARS) farm program: Results from finisher pig surveillance. Zoonoses Public Health 2010, 57, 71–84. [Google Scholar] [CrossRef]
- Borck Høg, B.; Korsgaard, H.B.; Wolff Sönksen, U.; Bager, F.; Bortolaia, V.; Ellis-Iversen, J.; Hendriksen, R.S.; Borck Høg, B.; Jensen, L.B.; Korsgaard, H.B. Danish Integrated Antimicrobial Resistance Monitoring (DANMAP) 2016—Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, food, and Humans in Denmark; Technical University of Denmark National Food Institute: Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Hayer, S.S.; Lim, S.; Hong, S.; Elnekave, E.; Johnson, T.; Rovira, A.; Vannucci, F.; Clayton, J.B.; Perez, A.; Alvarez, J. Genetic determinants of resistance to extended-spectrum cephalosporin and fluoroquinolone in Escherichia coli isolated from diseased pigs in the United States. mSphere 2020, 5, e00990-20. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.K.; Gong, J.; Kelly, P.; Lu, G.; Guardabassi, L.; Wei, L.; Han, X.; Qiu, H.; Price, S.; Cheng, D. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China. PLoS ONE 2017, 12, e0185326. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, X.-Y.; Xia, Y.-B.; Guo, Z.-W.; Ma, Z.-B.; Yi, M.-Y.; Lv, L.-C.; Lu, P.-L.; Yan, J.-C.; Huang, J.-W. Clonal spread of Escherichia coli ST93 carrying mcr-1-harboring IncN1-IncHI2/ST3 plasmid among companion animals, China. Front. Microbiol. 2018, 9, 2989. [Google Scholar] [CrossRef]
- Hanon, J.-B.; Jaspers, S.; Butaye, P.; Wattiau, P.; Méroc, E.; Aerts, M.; Imberechts, H.; Vermeersch, K.; Van der Stede, Y. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011–2014). Prev. Vet. Med. 2015, 122, 443–452. [Google Scholar] [CrossRef]
- Wendlandt, S.; Shen, J.; Kadlec, K.; Wang, Y.; Li, B.; Zhang, W.-J.; Feßler, A.T.; Wu, C.; Schwarz, S. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol. 2015, 23, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Okatani, A.; Esaki, H.; Harada, K.; Sawada, T.; Murakami, M.; Marumo, K.; Kato, Y.; Sato, R.; Shimura, K. Herd prevalence of E nterobacteriaceae producing CTX-M-type and CMY-2 β-lactamases among Japanese dairy farms. J. Appl. Microbiol. 2013, 115, 282–289. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry. Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical Studies and Recommendations for Labeling; FDA: Silver Spring, MD, USA, 2013.
- Dahmen, S.; Haenni, M.; Madec, J.-Y. IncI1/ST3 plasmids contribute to the dissemination of the bla CTX-M-1 gene in Escherichia coli from several animal species in France. J. Antimicrob. Chemother. 2012, 67, 3011–3012. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.; de Jong, A.; Moyaert, H.; Simjee, S.; El Garch, F.; Morrissey, I.; Marion, H.; Vallé, M. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results. Int. J. Antimicrob. Agents 2015, 46, 13–20. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.; Léger, D.; Keefe, G.; Scholl, D.; Morck, D.; Barkema, H. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms. J. Dairy Sci. 2012, 95, 4319–4332. [Google Scholar] [CrossRef]
- Boireau, C.; Morignat, É.; Cazeau, G.; Jarrige, N.; Jouy, É.; Haenni, M.; Madec, J.Y.; Leblond, A.; Gay, É. Antimicrobial resistance trends in Escherichia coli isolated from diseased food-producing animals in France: A 14-year period time-series study. Zoonoses Public Health 2018, 65, e86–e94. [Google Scholar] [CrossRef]
- Wasyl, D.; Hasman, H.; Cavaco, L.M.; Aarestrup, F.M. Prevalence and characterization of cephalosporin resistance in nonpathogenic Escherichia coli from food-producing animals slaughtered in Poland. Microb. Drug Resist. 2012, 18, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.-S.; Choi, D.-S.; Kim, Y.-J.; Chon, J.-W.; Kim, H.-S.; Park, H.-J.; Moon, J.-S.; Wee, S.-H.; Seo, K.-H. Characterization of Escherichia coli–producing extended-spectrum β-lactamase (ESBL) Isolated from chicken slaughterhouses in South Korea. Foodborne Pathog. Dis. 2015, 12, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Na, S.H.; Moon, D.C.; Kang, H.Y.; Song, H.-J.; Kim, S.-J.; Choi, J.-H.; Yoon, J.W.; Yoon, S.-S.; Lim, S.-K. Molecular characteristics of extended-spectrum β-lactamase/AmpC-producing Salmonella enterica serovar Virchow isolated from food-producing animals during 2010–2017 in South Korea. Int. J. Food Microbiol. 2020, 322, 108572. [Google Scholar] [CrossRef]
- Na, S.H.; Moon, D.C.; Choi, M.-J.; Oh, S.-J.; Jung, D.-Y.; Sung, E.J.; Kang, H.Y.; Hyun, B.-H.; Lim, S.-K. Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolated from ducks in South Korea. Foodborne Pathog. Dis. 2019, 16, 799–806. [Google Scholar] [CrossRef]
- Collignon, P.; Aarestrup, F.M.; Irwin, R.; McEwen, S. Human deaths and third-generation cephalosporin use in poultry, Europe. Emerg. Infect. Dis. 2013, 19, 1339–1340. [Google Scholar] [CrossRef]
- Lei, T.; Tian, W.; He, L.; Huang, X.-H.; Sun, Y.-X.; Deng, Y.-T.; Sun, Y.; Lv, D.-H.; Wu, C.-M.; Huang, L.-Z. Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China. J. Vet. Microbiol. 2010, 146, 85–89. [Google Scholar] [CrossRef]
- Eltai, N.O.; Abdfarag, E.A.; Al-Romaihi, H.; Wehedy, E.; Mahmoud, M.H.; Alawad, O.K.; Al-Hajri, M.M.; Al Thani, A.A.; Yassine, H.M. Antibiotic resistance profile of commensal Escherichia coli isolated from broiler chickens in Qatar. J. Food Prot. 2017, 81, 302–307. [Google Scholar] [CrossRef]
- Manishimwe, R.; Moncada, P.M.; Bugarel, M.; Scott, H.M.; Loneragan, G.H. Antibiotic resistance among Escherichia coli and Salmonella isolated from dairy cattle feces in Texas. PLoS ONE 2021, 16, e0242390. [Google Scholar] [CrossRef]
- Alhababi, D.A.; Eltai, N.O.; Nasrallah, G.K.; Farg, E.A.; Al Thani, A.A.; Yassine, H.M. Antimicrobial resistance of commensal Escherichia coli isolated from food animals in Qatar. Microb. Drug Resist. 2020, 26, 420–427. [Google Scholar] [CrossRef]
- Lim, S.-K.; Kang, H.Y.; Lee, K.; Moon, D.-C.; Lee, H.-S.; Jung, S.-C. First Detection 45 the mcr-1 Gene in Escherichia coli Isolated from Livestock between 2013 and 2015 in South Korea. Antimicrob. Agents Chemother. 2016, 60, 6991–6993. [Google Scholar] [CrossRef] [Green Version]
- Belaynehe, K.M.; Shin, S.W.; Park, K.Y.; Jang, J.Y.; Won, H.G.; Yoon, I.J.; Yoo, H.S. Emergence of mcr-1 and mcr-3 variants coding for plasmid-mediated colistin resistance in Escherichia coli isolates from food-producing animals in South Korea. Int. J. Infect. Dis. 2018, 72, 22–24. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance due to Non-Human Use; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Wyrsch, E.R.; Reid, C.J.; DeMaere, M.Z.; Liu, M.Y.; Chapman, T.A.; Roy Chowdhury, P.; Djordjevic, S.P. Complete sequences of multiple-drug resistant IncHI2 ST3 plasmids in Escherichia coli of porcine origin in Australia. Front. Sustain. Food Syst. 2019, 3, 18. [Google Scholar] [CrossRef]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The resistome, mobilome, virulome and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria. GMS Hyg. Infect. Control 2017, 12, 20170410. [Google Scholar]
- Chalmers, G.; Cormier, A.C.; Nadeau, M.; Côté, G.; Reid-Smith, R.J.; Boerlin, P. Determinants of virulence and of resistance to ceftiofur, gentamicin, and spectinomycin in clinical Escherichia coli from broiler chickens in Québec, Canada. Vet. Microbiol. 2017, 203, 149–157. [Google Scholar] [CrossRef]
Cattle | Pigs | Chickens | |||||||
---|---|---|---|---|---|---|---|---|---|
Year | No. of Slaughter-Houses | No. of Farms | No. of Isolates | No. of Slaughter-Houses | No. of Farms | No. of Isolates | No. of Slaughter- Houses | No. of Farms | No. of Isolates |
2010 | 27 | 211 | 231 | 27 | 160 | 221 | 15 | 151 | 155 |
2011 | 29 | 322 | 347 | 26 | 195 | 231 | 14 | 135 | 141 |
2012 | 25 | 265 | 282 | 28 | 243 | 277 | 12 | 181 | 200 |
2013 | 22 | 207 | 209 | 28 | 186 | 199 | 16 | 183 | 187 |
2014 | 23 | 287 | 299 | 26 | 251 | 294 | 11 | 190 | 192 |
2015 | 23 | 204 | 206 | 24 | 204 | 218 | 13 | 177 | 189 |
2016 | 27 | 365 | 401 | 26 | 296 | 347 | 15 | 281 | 303 |
2017 | 26 | 260 | 263 | 28 | 244 | 262 | 13 | 133 | 137 |
2018 | 24 | 177 | 178 | 25 | 171 | 189 | 21 | 162 | 163 |
2019 | 27 | 152 | 152 | 21 | 136 | 139 | 22 | 138 | 143 |
2020 | 21 | 162 | 165 | 19 | 163 | 165 | 19 | 146 | 152 |
Total | 83 | 2478 | 2733 | 85 | 2039 | 2542 | 60 | 1606 | 1962 |
% (No. of Resistant Isolates) | p-Value | ||||
---|---|---|---|---|---|
Antimicrobials | Cattle (n = 2733) | Pigs (n = 2542) | Chickens (n = 1962) | Total (n = 7237) | |
Amoxicillin/clavulanic acid | 0.6 (16) | 1.2 (30) | 3.3 (65) | 1.5 (111) | ≤0.0001 |
Ampicillin | 11.7 (320) | 64.1 (1630) | 72.7 (1427) | 46.7 (3377) | ≤0.0001 |
Cefoxitin | 0.6 (17) | 1.5 (37) | 3.7 (73) | 1.8 (127) | ≤0.0001 |
Ceftiofur | 0.7 (19) | 3.7 (93) | 8.8 (172) | 3.9 (284) | ≤0.0001 |
Chloramphenicol | 10.2 (279) | 67.3 (1712) | 45.6 (895) | 39.9 (2886) | ≤0.0001 |
Ciprofloxacin | 2.7 (75) | 12.7 (322) | 76.1 (1493) | 26.1 (1890) | ≤0.0001 |
Colistin | 0.3 (9) | 0.8 (20) | 1.1 (21) | 0.7 (50) | 0.0021 |
Gentamicin | 2.4 (65) | 16.0 (407) | 16.4 (321) | 11.0 (793) | ≤0.0001 |
Nalidixic acid | 8.2 (225) | 26.7 (678) | 88.6 (1738) | 36.5 (2641) | ≤0.0001 |
Streptomycin | 39.2 (1070) | 68.6 (1743) | 63.0 (1236) | 55.9 (4049) | ≤0.0001 |
Tetracycline | 41.4 (1131) | 74.0 (1881) | 73.9 (1450) | 61.7 (4462) | ≤0.0001 |
Trimethoprim/sulfamethoxazole | 6.4 (175) | 38.6 (980) | 42.2 (828) | 27.4 (1983) | ≤0.0001 |
MDR | 17.1 (466) | 73.7 (1874) | 87.1 (1709) | 55.9 (4049) | ≤0.0001 |
No. of Antimicrobials | Total No. of Isolates (%) | Most Common Pattern (No. of Isolates) |
---|---|---|
0 | 1426 (52.2) | - |
1 | 233 (8.5) | TET (n = 122) |
2 | 603 (22.1) | STR TET (n = 556) |
3 | 219 (8.0) | NAL STR TET (n = 72) |
4 | 110 (4.0) | AMP CHL STR TET (n = 52) |
5 | 59 (2.2) | AMP CHL STR TET SXT (n = 22) |
6 | 40 (1.5) | AMP CHL GEN STR TET SXT (n = 10) |
AMP CHL NAL STR TET SXT (n = 10) | ||
7 | 25 (0.9) | AMP CHL CIP NAL STR TET SXT (n = 15) |
8 | 13 (0.5) | AMP CHL CIP GEN NAL STR TET SXT (n = 11) |
9 | 2 (0.1) | AMP XNL CHL CIP GEN NAL STR TET SXT (n = 2) |
10 | 2 (0.1) | AMP FOX XNL CHL CIP GEN NAL STR TET SXT (n = 2) |
11 | 1 (0.04) | AMC AMP FOX XNL CHL CIP GEN NAL STR TET SXT (n = 1) |
No. of Antimicrobials | Total No. of Isolates (%) | Most Common Pattern (No. of Isolates) |
---|---|---|
0 | 261 (10.3) | |
1 | 160 (6.3) | TET (n = 73) |
2 | 232 (9.1) | STR TET (n = 94) |
3 | 377 (14.8) | CHL STR TET (n = 92) |
4 | 579 (22.7) | AMP CHL STR TET (n = 305) |
5 | 480 (18.9) | AMP CHL STR TET SXT (n = 244) |
6 | 236 (9.3) | AMP CHL NAL STR TET SXT (n = 63) |
7 | 126 (5.0) | AMP CHL CIP NAL STR TET SXT (n = 56) |
8 | 64 (2.5) | AMP CHL CIP GEN NAL STR TET SXT (n = 45) |
9 | 20 (0.8) | AMP XNL CHL CIP GEN NAL STR TET SXT (n = 9) |
10 | 5 (0.2) | AMC AMP FOX CHL CIP GEN NAL STR TET SXT (n = 2) |
AMP FOX XNL CHL CIP GEN NAL STR TET SXT (n = 2) | ||
11 | 2 (0.1) | AMC AMP FOX XNL CHL CIP GEN NAL STR TET SXT (n = 2) |
No. of Antimicrobials | Total No. of Isolates (%) | Most Common Pattern (No. of Isolates) |
---|---|---|
0 | 63 (3.2) | |
1 | 63 (3.2) | NAL (n = 29) |
2 | 123 (6.3) | CIP NAL (n = 55) |
3 | 227 (11.6) | AMP CIP NAL (n = 47) |
4 | 272 (13.9) | AMP CIP NAL TET (n = 55) |
5 | 366 (18.7) | AMP CIP NAL STR TET (n = 73) |
6 | 359 (18.3) | AMP CIP NAL STR TET SXT (n = 104) |
7 | 309 (15.8) | AMP CHL CIP NAL STR TET SXT (n = 198) |
8 | 142 (7.2) | AMP CHL CIP GEN NAL STR TET SXT (n = 107) |
9 | 24 (1.2) | AMC AMP FOX XNL CHL CIP NAL STR TET (n = 7) |
10 | 12 (0.6) | AMC AMP FOX XNL CHL CIP NAL STR TET SXT (n = 8) |
11 | 2 (0.1) | AMC AMP FOX XNL CHL CIP GEN NAL STR TET SXT (n = 2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-J.; Kim, S.-J.; Moon, D.C.; Mechesso, A.F.; Choi, J.-H.; Kang, H.Y.; Boby, N.; Yoon, S.-S.; Lim, S.-K. Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020. Microorganisms 2022, 10, 524. https://doi.org/10.3390/microorganisms10030524
Song H-J, Kim S-J, Moon DC, Mechesso AF, Choi J-H, Kang HY, Boby N, Yoon S-S, Lim S-K. Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020. Microorganisms. 2022; 10(3):524. https://doi.org/10.3390/microorganisms10030524
Chicago/Turabian StyleSong, Hyun-Ju, Su-Jeong Kim, Dong Chan Moon, Abraham Fikru Mechesso, Ji-Hyun Choi, Hee Young Kang, Naila Boby, Soon-Seek Yoon, and Suk-Kyung Lim. 2022. "Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020" Microorganisms 10, no. 3: 524. https://doi.org/10.3390/microorganisms10030524
APA StyleSong, H.-J., Kim, S.-J., Moon, D. C., Mechesso, A. F., Choi, J.-H., Kang, H. Y., Boby, N., Yoon, S.-S., & Lim, S.-K. (2022). Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020. Microorganisms, 10(3), 524. https://doi.org/10.3390/microorganisms10030524