To Be or Not to Be an OXA-48 Carbapenemase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Confirmatory Tests for Carbapenemase-Producing Enterobacterales
2.3. PCR, Cloning Experiments, and DNA Sequencing
2.4. β Lactamase Purification
2.5. Kinetic Studies
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. β-Lactamase Database (BLDB)—Structure and Function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Aubert, D.; Naas, T.; Héritier, C.; Poirel, L.; Nordmann, P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J. Bacteriol. 2006, 188, 6506–6514. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.E. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [Green Version]
- Jousset, A.B.; Emeraud, C.; Bonnin, R.A.; Naas, T.; Dortet, L. Characteristics and evolution of carbapenemase-producing Enterobacterales in France, 2012–2020. BEH 2021, 18–19, 351–358. [Google Scholar]
- Oueslati, S.; Dabos, M.L.; Zavala, A.; Iorga, B.I.; Naas, T. A greater than expected variability among oxa-48-like carbapenemases. Rom. Arch. Microbiol. Immunol. 2018, 77, 117–122. [Google Scholar]
- Docquier, J.D.; Calderone, V.; De Luca, F.; Benvenuti, M.; Giuliani, F.; Bellucci, L.; Tafi, A.; Nordmann, P.; Botta, M.; Rossolini, G.M.; et al. Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 2009, 16, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Dabos, L.; Zavala, A.; Bonnin, R.A.; Beckstein, O.; Retailleau, P.; Iorga, B.I.; Naas, T. Substrate Specificity of OXA-48 after β5-β6 Loop Replacement. ACS Infect. Dis. 2020, 6, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Retailleau, P.; Marchini, L.; Berthault, C.; Dortet, L.; Bonnin, R.A.; Iorga, B.I.; Naas, T. Role of Arginine 214 in the Substrate Specificity of OXA-48. Antimicrob. Agents Chemother. 2020, 64, e02329-19. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Nordmann, P.; Poirel, L. Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J. Antimicrob. Chemother. 2015, 70, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oueslati, S.; Retailleau, P.; Marchini, L.; Dortet, L.; Bonnin, R.A.; Iorga, B.I.; Naas, T. Biochemical and Structural Characterization of OXA-405, an OXA-48 Variant with Extended-Spectrum β-Lactamase Activity. Microorganisms 2019, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Rima, M.; Emeraud, C.; Bonnin, R.A.; Gonzalez, C.; Dortet, L.; Iorga, B.I.; Oueslati, S.; Naas, T. Biochemical characterization of OXA-244, an emerging OXA-48 variant with reduced β-lactam hydrolytic activity. J. Antimicrob. Chemother. 2021, 76, 2024–2028. [Google Scholar] [CrossRef]
- Dortet, L.; Agathine, A.; Naas, T.; Cuzon, G.; Poirel, L.; Nordmann, P. Evaluation of the RAPIDEC CARBA NP, the Rapid CARB Screen and the CarbaNP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2015, 70, 3014–3022. [Google Scholar] [CrossRef] [Green Version]
- Dortet, L.; Tandé, D.; de Briel, D.; Bernabeu, S.; Lasserre, C.; Gregorowicz, G.; Jousset, A.B.; Naas, T. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: Comparison of the commercialized MBT STAR-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC CARBA NP. J. Antimicrob. Chemother. 2018, 73, 2352–2359. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu, S.; Dortet, L.; Naas, T. Evaluation of the β-CARBA™ test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J. Antimicrob. Chemother. 2017, 72, 1646–1658. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin, R.A.; Dortet, L.; Naas, T. Retrospective and prospective evaluation of the Carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. PLoS ONE 2017, 12, e0170769. [Google Scholar] [CrossRef] [Green Version]
- Muntean, M.M.; Muntean, A.A.; Gauthier, L.; Creton, E.; Cotellon, G.; Popa, M.I.; Bonnin, R.A.; Naas, T. Evaluation of the rapid carbapenem inactivation method (rCIM): A phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 900–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabos, L.; Rodriguez, C.H.; Nastro, M.; Dortet, L.; Bonnin, R.A.; Famiglietti, A.; Iorga, B.I.; Vay, C.; Naas, T. LMB-1 producing Citrobacter freundii from Argentina, a novel player in the field of MBLs. Int. J. Antimicrob. Agents 2020, 55, 105857. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Naas, T.; Sougakoff, W.; Casetta, A.; Nordmann, P. Molecular characterization of OXA-20, a novel class D β-lactamase, and its integron from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1998, 42, 2074–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabos, L.; Bonnin, R.; Dortet, L.; Iorga, B.; Naas, T. Biochemical and Structural Investigation of the Role of β5-β6 Loop in Substrate Specificity of OXA-48–Like Enzymes; P1180; ECCMID: Amsterdam, The Netherlands, 2016; Available online: https://www.eccmid.org/fileadmin/src/media/PDFs/2016.03.23_Programme_book_online.pdf (accessed on 24 December 2021).
- Dabos, L.; Jousset, A.B.; Bonnin, R.A.; Fortineau, N.; Zavala, A.; Retailleau, P.; Iorga, B.I.; Naas, T. Genetic and Biochemical Characterization of OXA-535, a Distantly Related OXA-48-Like β-Lactamase. Antimicrob. Agents Chemother. 2018, 62, e01198-18. [Google Scholar] [CrossRef] [Green Version]
- Dabos, L.; Bogaerts, P.; Bonnin, R.A.; Zavala, A.; Sacré, P.; Iorga, B.; Huang, D.T.; Glupczynski, Y.; Naas, T. Genetic and Biochemical characterization of OXA-519, a novel OXA-48-like β-lactamase. Antimicrob. Agents Chemother. 2018, 68, 00469-18. [Google Scholar] [CrossRef] [Green Version]
- Lund, B.A.; Thomassen, A.M.; Carlsen, T.; Leiros, H. Biochemical and biophysical characterization of the OXA-48-like carbapenemase OXA-436. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2021, 77, 312–318. [Google Scholar] [CrossRef]
- De Belder, D.; Ghiglione, B.; Pasteran, F.; de Mendieta, J.M.; Corso, A.; Curto, L.; Di Bella, A.; Gutkind, G.; Gomez, S.A.; Power, P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect. Dis. 2020, 6, 3026–3033. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503–1537. [Google Scholar] [CrossRef] [Green Version]
- Tijet, N.; Boyd, D.; Patel, S.N.; Mulvey, M.R.; Melano, R.G. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 4578–4580. [Google Scholar] [CrossRef] [Green Version]
- Osterblad, M.; Hakanen, A.J.; Jalava, J. Evaluation of the Carba NP test for carbapenemase detection. Antimicrob. Agents Chemother. 2014, 58, 7553–7556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, S.A.; Limbago, B.; Traczewski, M.; Anderson, K.; Hackel, M.; Hindler, J.; Sahm, D.; Alyanak, E.; Lawsin, A.; Gulvik, C.A.; et al. Multicenter Performance Assessment of Carba NP Test. J. Clin. Microbiol. 2017, 55, 1954–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumudunie, W.; Wijesooriya, L.I.; Wijayasinghe, Y.S. Comparison of four low-cost carbapenemase detection tests and a proposal of an algorithm for early detection of carbapenemase-producing Enterobacteriaceae in resource-limited settings. PLoS ONE 2021, 16, e0245290. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Castanheira, M.; Carrer, A.; Rodriguez, C.P.; Jones, R.N.; Smayevsky, J.; Nordmann, P. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 2011, 55, 2546–2551. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-Mallecot, Y.; Naas, T.; Bonnin, R.A.; Patino, R.; Glaser, P.; Fortineau, N.; Dortet, L. OXA-244-Producing Escherichia coli Isolates, a Challenge for Clinical Microbiology Laboratories. Antimicrob. Agents Chemother. 2017, 61, e00818-17. [Google Scholar] [CrossRef] [Green Version]
- Emeraud, C.; Biez, L.; Girlich, D.; Jousset, A.B.; Naas, T.; Bonnin, R.A.; Dortet, L. Screening of OXA-244 producers, a difficult-to-detect and emerging OXA-48 variant? J. Antimicrob. Chemother. 2020, 75, 2120–2123. [Google Scholar] [CrossRef]
Mutant | kcat/Km a | β-Carba | Carba NP Test | RAPIDEC® CARBA NP | MBT START-Carba | CIM | rCIM |
---|---|---|---|---|---|---|---|
1 OXA-181 | 550 | + | + | + | H | + | + |
1 OXA-162 | 420 | + | + | + | H | + | + |
1 OXA-204 | 420 | + | + | + | H | + | + |
2 OXA-48 ΔP | 386 | + | + | + | H | + | + |
3 OXA-48 | 369 | + | + | + | H | + | + |
2 OXA-48 H90A | 268 | + | + | + | H | + | + |
2 OXA-48 P217A | 214 | + | + | + | H | + | + |
2 OXA-48 E185A-R186A | 126 | + | + | + | H | + | + |
2 OXA-48 E185A-R186A-R189A | 121 | + | + | + | H | + | + |
2 OXA-48 D229A | 113 | + | + | + | H | + | + |
2 OXA-48 R189A | 71 | + | + | + | H | + | + |
4 OXA-535 | 67 | + | + | + | H | + | + |
2 OXA-48 ΔEP | 31 | + | + | + | H | + | + |
1 OXA-232 | 20 | + | + | + | H | + | + |
2 OXA-517 | 14 | + | + | + | H | + | + |
2 OXA-48 ΔIEP | 6.2 | + | + | + | H | + | + |
2 OXA-48 ΔY | 3.7 | + | + | + | H | + | + |
5 OXA-48Loop18 | 3.2 | + | + | + | H | + | + |
6 OXA-519 | 2.1 | + | + | + | H | + | + |
2 OXA-48 ΔYST | 0.52 | + | + | + | H | + | + |
2 OXA-48 ΔYS | 0.39 | + | − | + | H | + | + |
2 OXA-48 ΔRIEP | 0.27 | + | − | + | H | + | + |
2 OXA-48 ΔYSTRIEP | 0.21 | − | − | − | NH | − | − |
7 OXA-405 | 0.20 | + | − | − | NH | − | − |
2 OXA-48 ΔTRIEP | 0.14 | + | − | − | NH | − | − |
1 OXA-163 | 0.06 | + | − | − | NH | − | − |
2 OXA-48 ΔYSTR | 0.02 | + | − | − | NH | − | − |
2 OXA-48 ΔYSTRI | 0.02 | − | − | − | NH | − | − |
2 OXA-48 ΔYSTRIE | 0.02 | − | − | − | NH | − | − |
2 OXA-48 ΔSTRIEP | ND | − | − | − | NH | − | − |
OXA-48 Variant | kcat/KM (mM−1·s−1) Imipenem | Phenotype |
---|---|---|
1 OXA-181 | 550 | Carbapenemase |
1 OXA-16 | 420 | Carbapenemase |
1 OXA-20 | 420 | Carbapenemase |
2 OXA-48 | 369 | Carbapenemase |
3 OXA-436 | 300 | Carbapenemase |
1 OXA-232 | 38 | Carbapenemase |
4 OXA-244 | 20 | Carbapenemase |
5 OXA-517 | 14 | Carbapenemase |
6 OXA-438 | 4.4 | Carbapenemase |
7 OXA-519 | 2.1 | Carbapenemase |
8 OXA-405 | 0.2 | non-carbapenemase |
6 OXA-247 | 0.2 | non-carbapenemase |
1 OXA-163 | 0.06 | non-carbapenemase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabos, L.; Oueslati, S.; Bernabeu, S.; Bonnin, R.A.; Dortet, L.; Naas, T. To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms 2022, 10, 258. https://doi.org/10.3390/microorganisms10020258
Dabos L, Oueslati S, Bernabeu S, Bonnin RA, Dortet L, Naas T. To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms. 2022; 10(2):258. https://doi.org/10.3390/microorganisms10020258
Chicago/Turabian StyleDabos, Laura, Saoussen Oueslati, Sandrine Bernabeu, Rémy A. Bonnin, Laurent Dortet, and Thierry Naas. 2022. "To Be or Not to Be an OXA-48 Carbapenemase" Microorganisms 10, no. 2: 258. https://doi.org/10.3390/microorganisms10020258
APA StyleDabos, L., Oueslati, S., Bernabeu, S., Bonnin, R. A., Dortet, L., & Naas, T. (2022). To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms, 10(2), 258. https://doi.org/10.3390/microorganisms10020258