Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities
Abstract
:1. Introduction
2. Functionalization of Urinary Catheter Surfaces with Antimicrobial Entities
2.1. Photosensitizing Molecules
2.2. Antibiotics and Antimicrobial Agent
2.3. Antimicrobial Polymers
2.4. Silver Salts
2.5. Antimicrobial Derivative Compounds, Bacteriophages, and Enzymes
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andersen, M.J.; Flores-Mireles, A.L. Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. Coatings 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.; Singh, S.; Lepoittevin, B.; Roger, P.; Panigrahi, M.; Gupta, B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. Glob. Chall. 2018, 2, 1700068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associated infections. Adv. Colloid Interface Sci. 2020, 284, 102230. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, H.C.; Yu, H.; Yan, S.J.; Luan, S.F. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater. Sci. 2020, 8, 4095–4108. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, D.M.; Darouiche, R.O. New strategies to prevent catheter-associated urinary tract infections. Nat. Rev. Urol. 2012, 9, 305–314. [Google Scholar] [CrossRef]
- Al-Qahtani, M.; Safan, A.; Jassim, G.; Abadla, S. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: A review on recent updates. J. Infect. Public Health 2019, 12, 760–766. [Google Scholar] [CrossRef]
- Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.V.; Patel, P.R.; Thorat-Gadgil, B.S.; Pandit, A.; Bohara, R.A. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 108, 110319. [Google Scholar] [CrossRef]
- Dellimore, K.H.; Helyer, A.R.; Franklin, S.E. A scoping review of important urinary catheter induced complications. J. Mater. Sci.-Mater. Med. 2013, 24, 1825–1835. [Google Scholar] [CrossRef] [Green Version]
- Werneburg, G.T.; Nguyen, A.; Henderson, N.S.; Rackley, R.R.; Shoskes, D.A.; Le Sueur, A.L.; Corcoran, A.T.; Katz, A.E.; Kim, J.; Rohan, A.J.; et al. The Natural History and Composition of Urinary Catheter Biofilms: Early Uropathogen Colonization with Intraluminal and Distal Predominance. J. Urol. 2020, 203, 357–363. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Wang, Z.P.; Li, S.H.; Yuan, X. Antimicrobial strategies for urinary catheters. J. Biomed. Mater. Res. Part A 2019, 107, 445–467. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Andrade, V.L.F.; Fernandes, F.A.V. Prevention of catheter-associated urinary tract infection: Implementation strategies of international guidelines. Rev. Lat.-Am. Enferm. 2016, 24, e2678. [Google Scholar] [CrossRef] [Green Version]
- Werneburg, G.T. Catheter-Associated Urinary Tract Infections: Current Challenges and Future Prospects. Res. Rep. Urol. 2022, 14, 109–133. [Google Scholar] [CrossRef]
- Ansari, M.A.; Albetran, H.M.; Alheshibri, M.H.; Timoumi, A.; Algarou, N.A.; Akhtar, S.; Slimani, Y.; Almessiere, M.A.; Alahmari, F.S.; Baykal, A.; et al. Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2020, 9, 572. [Google Scholar] [CrossRef]
- Rahuman, H.B.H.; Dhandapani, R.; Palanivel, V.; Thangavelu, S.; Paramasivam, R.; Muthupandian, S. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE 2021, 16, e0256748. [Google Scholar] [CrossRef]
- Conway, L.J.; Larson, E.L. Guidelines to prevent catheter-associated urinary tract infection: 1980 to 2010. Heart Lung 2012, 41, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sun, L.Y.; Zhang, P.; Wang, Y. Novel Approaches to Combat Medical Device-Associated BioFilms. Coatings 2021, 11, 294. [Google Scholar] [CrossRef]
- Amaro, F.; Gomez-Mendoza, M.; Descalzo, A.B.; Rivas, L.; Orellana, G. Self-sterilizing photoactivated catheters to prevent nosocomial infections. In Proceedings of the 17th World Congress of the International-Photodynamic-Association (IPA), Cambridge, MA, USA, 28 June–4 July 2019. [Google Scholar]
- Belfield, K.; Chen, X.Y.; Smith, E.F.; Ashraf, W.; Bayston, R. An antimicrobial impregnated urinary catheter that reduces mineral encrustation and prevents colonisation by multi-drug resistant organisms for up to 12 weeks. Acta Biomater. 2019, 90, 157–168. [Google Scholar] [CrossRef]
- Burroughs, L.; Ashraf, W.; Singh, S.; Martinez-Pomares, L.; Bayston, R.; Hook, A.L. Development of dual anti-biofilm and anti-bacterial medical devices. Biomater. Sci. 2020, 8, 3926–3934. [Google Scholar] [CrossRef]
- Raut, P.W.; Khandwekar, A.P.; Sharma, N. Polyurethane-polyvinylpyrrolidone iodine blends as potential urological biomaterials. J. Mater. Sci. 2018, 53, 11176–11193. [Google Scholar] [CrossRef]
- Wang, R.; Neoh, K.G.; Kang, E.T.; Tambyah, P.A.; Chiong, E. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2015, 103, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liang, X.J.; Gadd, G.M.; Zhao, Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar. Drugs 2021, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudi, H.; Bahador, A.; Pourhajibagher, M.; Alikhani, M.Y. Antimicrobial Photodynamic Therapy: An Effective Alternative Approach to Control Bacterial Infections. J. Lasers Med. Sci. 2018, 9, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, F.; Stringasci, M.D.; Requena, M.B.; Blanco, K.C.; Dias, L.D.; Correa, T.Q.; Bagnato, V.S. Randomized and Controlled Clinical Studies on Antibacterial Photodynamic Therapy: An Overview. Photonics 2022, 9, 340. [Google Scholar] [CrossRef]
- Dias, L.D.; Blanco, K.C.; Mfouo-Tynga, I.S.; Inada, N.M.; Bagnato, V.S. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. J. Photochem. Photobiol. C-Photochem. Rev. 2020, 45, 100384. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kedzierska, E.; Knap-Czop, K.; Kotlinska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Lellouche, J.; Friedman, A.; Lahmi, R.; Gedanken, A.; Banin, E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomed. 2012, 7, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Al Rugaie, O.; Abdellatif, A.A.H.; El-Mokhtar, M.A.; Sabet, M.A.; Abdelfattah, A.; Alsharidah, M.; Aldubaib, M.; Barakat, H.; Abudoleh, S.M.; Al-Regaiey, K.A.; et al. Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers. Microorganisms 2022, 10, 1297. [Google Scholar] [CrossRef]
- Bovis, M.J.; Noimark, S.; Woodhams, J.H.; Kay, C.W.M.; Weiner, J.; Peveler, W.J.; Correia, A.; Wilson, M.; Allan, E.; Parkin, I.P.; et al. Photosensitisation studies of silicone polymer doped with methylene blue and nanogold for antimicrobial applications. Rsc Adv. 2015, 5, 54830–54842. [Google Scholar] [CrossRef]
- Vogeling, H.; Plenagl, N.; Seitz, B.S.; Duse, L.; Pinnapireddy, S.R.; Dayyoub, E.; Jedelska, J.; Brussler, J.; Bakowsky, U. Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109749. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhou, Q.F.; Deng, Z.T.; Pan, M.; Liu, X.; Wu, J.R.; Yan, F.; Zheng, H.R. IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor. Sci. Rep. 2016, 6, 25968. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Lelie- van der Zande, R.; Bouvy, M.; Teichert, M. Adherence to guideline recommendations for urinary tract infections in adult women: A cross-sectional study. Prim. Health Care Res. Dev. 2021, 22, e11. [Google Scholar] [CrossRef]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.Y.; Smith, E.F.; Fay, M.; Parmenter, C.D.J.; et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef]
- Huang, K.S.; Yang, C.H.; Huang, S.L.; Chen, C.Y.; Lu, Y.Y.; Lin, Y.S. Recent Advances in Antimicrobial Polymers: A Mini-Review. Int. J. Mol. Sci. 2016, 17, 1578. [Google Scholar] [CrossRef] [Green Version]
- Bracic, M.; Sauperl, O.; Strnad, S.; Kosalec, I.; Plohl, O.; Zemljic, L.F. Surface modification of silicone with colloidal polysaccharides formulations for the development of antimicrobial urethral catheters. Appl. Surf. Sci. 2019, 463, 889–899. [Google Scholar] [CrossRef]
- Alves, P.; Gomes, L.C.; Vorobii, M.; Rodriguez-Emmenegger, C.; Mergulhao, F.J. The potential advantages of using a poly(HPMA) brush in urinary catheters: Effects on biofilm cells and architecture. Colloids Surf. B-Biointerfaces 2020, 191, 110976. [Google Scholar] [CrossRef]
- Yang, K.; Kim, K.; Lee, E.A.; Liu, S.S.; Kabli, S.; Alsudir, S.A.; Albrahim, S.; Zhou, A.; Park, T.G.; Lee, H.; et al. Robust Low Friction Antibiotic Coating of Urethral Catheters Using a Catechol-Functionalized Polymeric Hydrogel Film. Front. Mater. 2019, 6, 274. [Google Scholar] [CrossRef]
- Costa, B.; Mota, R.; Tamagnini, P.; Martins, M.C.L.; Costa, F. Natural Cyanobacterial Polymer-Based Coating as a Preventive Strategy to Avoid Catheter-Associated Urinary Tract Infections. Mar. Drugs 2020, 18, 279. [Google Scholar] [CrossRef]
- Alves, P.; Gomes, L.C.; Rodriguez-Emmenegger, C.; Mergulhao, F.J. Efficacy of A Poly(MeOEGMA) Brush on the Prevention of Escherichia coli Biofilm Formation and Susceptibility. Antibiotics 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Brill, F.H.H.; Gabriel, H.; Brill, H.; Klock, J.H.; Steinmann, J.; Arndt, A. Decolonization potential of 0.02% polyhexanide irrigation solution in urethral catheters under practice-like in vitro conditions. BMC Urol. 2018, 18, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandwekar, A.P.; Doble, M. Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex (R)). J. Mater. Sci. -Mater. Med. 2011, 22, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- MacPhee, R.A.; Koepsel, J.; Tailly, T.; Vangala, S.K.; Brennan, L.; Cadieux, P.A.; Burton, J.P.; Wattengel, C.; Razvi, H.; Dalsin, J. Application of Novel 3,4-Dihydroxyphenylalanine-Containing Antimicrobial Polymers for the Prevention of Uropathogen Attachment to Urinary Biomaterials. J. Endourol. 2019, 33, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Mahata, D.; Mandal, S.M.; Basak, A.; Nando, G.B. Self-assembled capsules of poly-N-glycidyl histidine ether-tannic acid for inhibition of biofilm formation in urinary catheters. RSC Adv. 2015, 5, 69215–69219. [Google Scholar] [CrossRef]
- Wang, R.; Neoh, K.G.; Shi, Z.L.; Kang, E.T.; Tambyah, P.A.; Chiong, E. Inhibition of escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 2012, 109, 336–345. [Google Scholar] [CrossRef]
- Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tabaran, F.A.; Mocan, L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl. Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Niskanen, J.; Shan, J.; Tenhu, H.; Jiang, H.; Kauppinen, E.; Barranco, V.; Pico, F.; Yliniemi, K.; Kontturi, K. Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym. Sci. 2010, 288, 543–553. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.G.; Sujitha, P. Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters. Nanotechnology 2014, 25, 325101. [Google Scholar] [CrossRef]
- Evliyaoglu, Y.; Kobaner, M.; Celebi, H.; Yelsel, K.; Dogan, A. The efficacy of a novel antibacterial hydroxyapatite nanoparticle-coated indwelling urinary catheter in preventing biofilm formation and catheter-associated urinary tract infection in rabbits. Urol. Res. 2011, 39, 443–449. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Keatch, R.; Corner, G.; Nabi, G.; Murdoch, S.; Davidson, F.; Zhao, Q. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J. Hosp. Infect. 2019, 103, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Kanugala, S.; Jinka, S.; Puvvada, N.; Banerjee, R.; Kumar, C.G. Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Janek, T.; Krasowska, A.; Czyznikowska, Z.; Lukaszewicz, M. Trehalose Lipid Biosurfactant Reduces Adhesion of Microbial Pathogens to Polystyrene and Silicone Surfaces: An Experimental and Computational Approach. Front. Microbiol. 2018, 9, 2441. [Google Scholar] [CrossRef] [Green Version]
- Lehman, S.M.; Donlan, R.M. Bacteriophage-Mediated Control of a Two-Species Biofilm Formed by Microorganisms Causing Catheter-Associated Urinary Tract Infections in an In Vitro Urinary Catheter Model. Antimicrob. Agents Chemother. 2015, 59, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Cadavid, E.; Echeverri, F. The Search for Natural Inhibitors of Biofilm Formation and the Activity of the Autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, K.; Fernandes, M.M.; Mendoza, E.; Tzanov, T. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl. Microbiol. Biotechnol. 2015, 99, 4373–4385. [Google Scholar] [CrossRef]
- Colletta, A.; Wu, J.F.; Wo, Y.Q.; Kappler, M.; Chen, H.; Xi, C.W.; Meyerhoff, M.E. S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections. ACS Biomater. Sci. Eng. 2015, 1, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.N.; Wang, J.; Ren, K.F.; Ji, J. Functionalized biomaterials to combat biofilms. Biomater. Sci. 2020, 8, 4052–4066. [Google Scholar] [CrossRef]
- Zangirolami, A.C.; Dias, L.D.; Blanco, K.C.; Vinagreiro, C.S.; Inada, N.M.; Arnaut, L.G.; Pereira, M.M.; Bagnato, V.S. Avoiding ventilator-associated pneumonia: Curcumin-functionalized endotracheal tube and photodynamic action. Proc. Natl. Acad. Sci. USA 2020, 117, 22967–22973. [Google Scholar] [CrossRef]
- Musco, S.; Giammo, A.; Savoca, F.; Gemma, L.; Geretto, P.; Soligo, M.; Sacco, E.; Del Popolo, G.; Li Marzi, V. How to Prevent Catheter-Associated Urinary Tract Infections: A Reappraisal of Vico’s Theory-Is History Repeating Itself? J. Clin. Med. 2022, 11, 3415. [Google Scholar] [CrossRef] [PubMed]
Entry | Antibiotics (Amount of Drug Loaded into Catheter) | Characterization Techniques | Bacteria | Results (Reduction) | Entry |
---|---|---|---|---|---|
1 | Rifampicin, triclosan, and sparfloxacin (7.74–222.42 µg/cm3) | AFM, X-ray photoelectron spectroscopy (XPS), static model, In vitro flow model, and high-performance liquid chromatography (HPLC) | E. coli, Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus saprophyticus, and Enterococcus faecalis (clinical isolate) | Up to 100% (after 24–72 h) | [36] |
2 | Rifampicin, triclosan, and sparfloxacin (0.080–1.084% w/w) | XPS, AFM, TEM, HPLC Static model, in vitro flow model, and SEM | S. saprophyticus, P. mirabilis, S. aureus and E. coli (clinical isolate) | Prevention of colonization of S. aureus, MRSE, beta-lactamase producing E. coli, and arbapenemase-producing E. coli during 12 weeks | [19] |
3 | Rifampicin, triclosan, and sparfloxacin | HPLC, SEM, and time of flight secondary ion mass spectrometry (ToF-SIMS) | S. aureus and E. coli (clinical isolate) | 100% of attached E. coli (tK100) | [20] |
Entry | Polymers (Amount of Polymer onto Catheter) | Characterizations | Microorganisms | Results (Reduction) % or Log Unit | Ref |
---|---|---|---|---|---|
1 | Colloidal polysaccharides immobilized on silicone | Fourier-transform infrared spectroscopy (FTIR), SEM, XPS, confocal laser scanning microscopy (CLSM) | S. aureus, E. coli, MRSA, and C. albicans (clinical isolate) | Inhibition of bacterial growth up to 86% (incubation for 18 h) | [38] |
2 | Poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)) | Contact angle measurement, measurement of the average roughness (Ra), AFM, and SEM | E. coli (CECT 434 and clinical isolate) | Reduction up to 87% (biofilm formation for 24 h) | [39] |
3 | Catechol-based hydrogel film | SEM, XPS, contact angle measuring, and ultraviolet–visible spectroscopy (UV-Vis) | E. coli (ATTC 29906) and S. aureus (ATTC 6341) | Reduction on bacterial adhesion/ biofilm formation (8 h) (up to 100%) | [40] |
4 | Cyanobacterial polymer-based coating | AFM, SEM, and water contact angle | E. coli (ATCC 25922), MRSA (ATCC 33591), K. pneumoniae (clinical isolate), and C. albicans (DSM 1386) | Reduction of adhesion up to 100% for C. albicans and biofilm formation (12 h) (E. coli) up to 60% | [41] |
5 | Poly[oligo(ethylene glycol) methyl ether methacrylate], poly(MeOEGMA) | SEM, and Optical Coherence Tomography (OCT) | E. coli JM109(DE3) | Reduced the adhesion of E. coli (up to 57%); ampicillin reduced up to 88% of E. coli (up to 24 h) | [42] |
6 | 0.02% polyhexanide solution | Characterization was not performed | S. aureus (ATCC 6538), Enterococcus hirae (ATCC 10541), E. coli K12 (ATCC 11229), P. mirabilis (ATCC 14153), P. aeruginosa (ATCC 15442), and K. pneumoniae (ATCC 16609) | Reduction of 1.64 log10 (incubated for 72 h) | [43] |
7 | Polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex®) (90 ± 4 µg/cm2) | FTIR, AFM, SEM- energy dispersive analysis of X-rays (EDAX), and water contact angle measurements | S. aureus (NCIM 5021) and P. aeruginosa (NCIM 5029) | Adhesion reduction: S. aureus (by 86%;) and P. aeruginosa (80%) in 4 h | [44] |
8 | Methoxylated polyethylene glycol 3,4-dihydroxyphenylalanine (DOPA) copolymer with AgNO3 or NaIO4 | Contact angle analysis | Uropathogenic clinical isolates, and E. coli (CFT073) | Showed a 99.9% bacterial killing | [45] |
9 | Polyurethane (PU) blends with polyvinylpyrrolidone iodine (PVPI) (0.5–1.5% w/w) | CLSM, contact angle, FTIR, SEM-EDAX, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) | P. aeruginosa (NCIM 5029), S. aureus (MCC 2408), and S. epidermidis (NCIM 2493) | Reduction of the bacterial adhesion up to 99.85% for S. aureus (4–48 h) | [21] |
10 | N-glycidyl histidine ether with tannic acid (solution applied of 1 mg/mL) | UV-Vis, FTIR, nuclear magnetic resonance spectroscopy (NMR), TGA, SEM, TEM, AFM, and dynamic light scattering (DLS) | Clinically isolated uropathogen, E. coli | Reduction of the bacterial adhesion up to 90% (biofilm growth for 7 days) | [46] |
11 | Carboxymethyl chitosan on medical grade silicone surface pre-treated with polydopamine (PDA) | XPS, and contact angle measurements | E. coli (ATCC DH5a) and P. mirabilis (ATCC 51286) | Reduced the adhesion of E. coli and P. mirabilis by 90% | [47] |
Entry | Coating | Characterization Techniques | Microorganisms | Results (Reduction) % or Log Unit | Ref |
---|---|---|---|---|---|
1 | Silver glyconanoparticles (AgNPs) using Kocuran, an exopolysaccharide produced by Kocuria rosea strain BS-1 | Surface plasmon resonance (SPR), X-ray diffraction analysis (XRD), selected area (electron) diffraction (SAED), and colloidal stability at different pH | S. aureus (ATCC 29213) and E. coli (ATCC 35218) | Inhibition of biofilm formation (up to 90%) | [51] |
2 | Ag+-incorporated nano- hydroxyapatite | SEM, energy dispersive X-ray analysis (EDX) | E. coli, Staphylococcus species, P. mirabilis, Enterobacter cloacae, P. aeruginosa, Pseudomonas alcaligenes, and A. haemolyticus (clinical samples presented during the catheterization) | The number of the rabbits with bacteriuria was lower for 7 days of catheterization protocol | [52] |
3 | Ag+-polytetrafluoroethylene nanocomposite deposited on silicone catheters (up to 145 mm2/mL of ratio of catheter surface area/volume of coating solution) | EDX, contact angle values and surface energies | E. coli (F1693) and P. mirabilis (ATCC 51286) | Development of bacteriuria (102 cells/mL) was an average 6 days vs. 41 days for uncoated and coated catheter, respectivelly (biofilm formation for 48 h) | [53] |
4 | Silver nanoparticles immobilized on polydopamine (PDA) (concentration of silver on surface: 10.2–13.2 ± 0.5–0.8 µg/cm2) | Field emission scanning electron microscopy (FESEM), XPS, and contact angle | E. coli, P. mirabilis, and P. aeruginosa | Encrustation up to 45 days | [22] |
Entry | Coating | Characterization Techniques | Microorganisms | Results (Reduction) % or Log Unit | Ref |
---|---|---|---|---|---|
1 | Mesoporous silica nanoparticles functionalized with phenazine-1-carboxamide (coated with 500 µg mL−1 of nanoparticles) | UV-vis, FTIR, DLS, XRD, SEM, TEM, TGA, and Brunauer-Emmett-Teller (BET) surface area analysis (BET) | Polymicrobial biofim (C. albicans (MTCC 227)-S. aureus (MTCC 96)) | No formation of polymicrobial biofilm (incubation times of 24, 48, and 72 h) | [54] |
2 | Trehalose lipid biosurfactnt from Rhodococcus fascians BD8 (Arctic soil) (0.035–0.5 mg mL−1) | HPLC, and surface tension reduction | C. albicans (ATCC 10231, and SC5314) and E. coli (clinical isolate, ATCC 10536, and ATCC 25922) | 95 and 70% antiadhesive activity against C. albicans and E. coli, respectively (incubated for 2 h on polymer surface) | [55] |
3 | Hydrogel with a mixtures of P. aeruginosa and P. mirabilis bacteriophages | - | P. aeruginosa and P. mirabilis (clinical isolates) | Reduction up to 4 log10 and >2 log10 for P. aeruginosa and P. mirabilis, respectively (biofilm growth for 72 to 96 h) | [56] |
4 | Natural derivative substances (phenyl-acyl derivatives, pyridines, pyrroles, pyrazines, and pyrans) (Concentration at 15 µg/mL) | SEM | K. pneumoniae (ATCC 13884) | Hydroxycinnamic acid derivative inhibited the formation of biofilm up to 67.38% (incubated times of 6 and 24 h) | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, L.D.; Duarte, L.S.; Naves, P.L.F.; Napolitano, H.B.; Bagnato, V.S. Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities. Microorganisms 2022, 10, 2484. https://doi.org/10.3390/microorganisms10122484
Dias LD, Duarte LS, Naves PLF, Napolitano HB, Bagnato VS. Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities. Microorganisms. 2022; 10(12):2484. https://doi.org/10.3390/microorganisms10122484
Chicago/Turabian StyleDias, Lucas D., Luana S. Duarte, Plínio L. F. Naves, Hamilton B. Napolitano, and Vanderlei S. Bagnato. 2022. "Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities" Microorganisms 10, no. 12: 2484. https://doi.org/10.3390/microorganisms10122484
APA StyleDias, L. D., Duarte, L. S., Naves, P. L. F., Napolitano, H. B., & Bagnato, V. S. (2022). Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities. Microorganisms, 10(12), 2484. https://doi.org/10.3390/microorganisms10122484