Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production
Abstract
:1. Introduction
2. Species of Algae and Their Nutritional Composition
Protein | Lipids | Ash | NDF | Ruminant Species | References | |
---|---|---|---|---|---|---|
(g/kg Dry Matter) | ||||||
Macroalgae | ||||||
Asparagopsis sp. | 183 | 3 | 504 | 272 | cattle | [6,20] |
Chaetomorpha linum | 103–182 | 14–20 | 120–319 | 319 | sheep | [21,22] |
Macrocystis pyrifera | 128 | 22 | 386 | 199 | goats | [23] |
Sargassum sp. | 86 | 6 | 277 | 141 | cattle | [24] |
Ulva lactuca | 95–211 | 5–17 | 175–181 | 216–415 | goats, sheep | [22,25] |
Microalgae | ||||||
Arthrospira platensis | 460–744 | 20–150 | 47–257 | 35–87 | cattle | [5,7,12,26,27] |
Chlorella pyrenoidosa | 548–600 | 20–143 | 64–202 | 4 | cattle | [5,12,28] |
Chlorella vulgaris | 586 | 123 | 51 | 15 | cattle | [7] |
Crypthecodinium cohnii | 194 | 575 | 69 | 50 | sheep, cattle | [29,30,31] |
Dunaliella salina | 62–570 | 60–281 | 90–787 | 0 | cattle | [5,12,28] |
Nannochloropsis gaditana | 385 | 192 | 158 | 219 | cattle | [7] |
Nannochloropsis oculata | 289–292 | 197–292 | 81–89 | 69.5 | cattle, goats | [32,33] |
Prototheca moriformis | 38–76 | 81–109 | 5–70 | 114 | cattle, sheep | [34,35] |
Schizocythrium sp. | 130–208 | 38–577 | 74–139 | 263–369 | cattle, sheep | [3,4,36,37] |
3. Effects of Algae on Dry Matter Intake and Apparent Total Tract Digestibility
4. Effects of Algae on Rumen Parameters
4.1. Volatile Fatty Acids
4.2. Microbial Synthesis in the Rumen
5. Fatty Acid Composition
6. Algae as Enteric Methane Mitigators
7. On-Farm or On-Site Production of Algae Species
8. Challenges with Algae
9. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gantar, M.; Svircev, Z. Microalgae and Cyanobacteria: Food for thought. J. Phycol. 2008, 44, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G. Chapter 15—Seaweeds: A sustainable feed source for livestock and aquaculture. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 389–420. [Google Scholar]
- Boeckaert, C.; Mestdagh, J.; Clayton, D.; Fievez, V. Micro-algae as potente rumen methane inhibitors and modifiers of rumen lipolysis and biohydrogenation of linoleic acid. Commun. Agric. Appl. Biol. Sci. 2004, 69, 127–130. [Google Scholar]
- Meale, S.J.; Chaves, A.V.; He, M.L.; McAllister, T.A. Dose-response of supplementing marine algae (Schizochytrium sp.) on production performance, fatty acid profiles and wool parameters of growing lambs. J. Anim. Sci. 2014, 92, 2202–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Poppi, D.P. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J. Anim. Sci. 2016, 94, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Laurens, L.; Glasser, M.; McMillan, J. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res. 2017, 24, 261–264. [Google Scholar] [CrossRef]
- Bani, A.; Parati, K.; Pozzi, A.; Previtali, C.; Bongioni, G.; Pizzera, A.; Ficara, E.; Bellucci, M. Comparison of the Performance and Microbial Community Structure of Two Outdoor Pilot-Scale Photobioreactors Treating Digestate. Microorganisms 2020, 8, 1754. [Google Scholar] [CrossRef]
- He, P.; Xu, S.; Zhang, H.; Wen, S.; Dai, Y.; Lin, S.; Yarish, C. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res. 2008, 42, 1281–1289. [Google Scholar] [CrossRef]
- Suresh, A.; Benor, S. Chapter 17—Microalgae-based biomass production for control of air pollutants. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment; Soreanu, G., Dumont, É., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 345–372. [Google Scholar]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Sun, X.Q.; Gibbs, S.J.; Poppi, D.P. Chlorella pyrenoidosa supplementation increased the concentration of unsaturated fatty acids in the rumen fluid of cattle fed a low-quality tropical forage. Rev. Bras. Zootec. 2020, 49, e20200042. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Microalgae in Ruminant Nutrition: A Review of the Chemical Composition and Nutritive Value. Ann. Anim. Sci. 2021, 21, 789–806. [Google Scholar] [CrossRef]
- Duong, V.T.; Ahmed, F.; Thomas-Hall, S.R.; Quigley, S.; Nowak, E.; Schenk, P.M. High Protein- and High Lipid-Producing Microalgae from Northern Australia as Potential Feedstock for Animal Feed and Biodiesel. Front. Bioeng. Biotechnol. 2015, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, R.; Hemaiswarya, S.; Kumar, N.; Sridhar, S.; Rengasamy, R. A Perspective on the Biotechnological Potential of Microalgae. Crit. Rev. Microbiol. 2008, 34, 77–88. [Google Scholar] [CrossRef]
- Drewery, M.L.; Sawyer, J.E.; Wickersham, T.A. Post-extraction algal residue as a protein supplement for beef steers consuming forage: Palatability and nutrient utilization. Anim. Feed Sci. Technol. 2021, 273, 114796. [Google Scholar] [CrossRef]
- Baber, J.R.; Sawyer, J.E.; Wickersham, T.A. Estimation of human-edible protein conversion efficiency, net protein contribution, and enteric methane production from beef production in the United States. Transl. Anim. Sci. 2018, 2, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, H.L.; Gogichaishvili, I.; Anderson, D.; Richardson, J.W.; Sawyer, J.; Wickersham, T.; Drewery, M.L. The value of post-extracted algae residue. Algal Res. 2012, 1, 185–193. [Google Scholar] [CrossRef]
- Neville, E.W.; Fahey, A.G.; Meade, K.G.; Mulligan, F.J. Effects of calcareous marine algae on milk production, feed intake, energy balance, mineral status, and inflammatory markers in transition dairy cows. J. Dairy Sci. 2022, 105, 6616–6627. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Ktita, S.R.; Chermiti, A.; Mahouachi, M. The use of seaweeds (Ruppia maritima and Chaetomorpha linum) for lamb fattening during drought periods. Small Rumin. Res. 2010, 91, 116–119. [Google Scholar] [CrossRef]
- Ktita, S.R.; Chermiti, A.; Bodas, R.; France, J.; López, S. Aquatic plants and macroalgae as potential feed ingredients in ruminant diets. J. Appl. Phycol. 2017, 29, 449–458. [Google Scholar] [CrossRef]
- Castro, N.M.; Valdez, M.C.; Alvares, A.; Ramírez, R.N.Á.; Rodríguez, I.S.; Contreras, H.H.; García, L.S. The kelp Macrocystis pyrifera as nutritional supplement for goats. Rev. Cient. 2009, 19, 63–70. [Google Scholar]
- Choi, Y.Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Kim, D.H.; Lee, S.S. The potential nutritive value of Sargassum fulvellum as a feed ingredient for ruminants. Algal Res. 2020, 45, 101761. [Google Scholar] [CrossRef]
- Ventura, M.R.; Castañón, J.I.R. The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin. Res. 1998, 29, 325–327. [Google Scholar] [CrossRef]
- Panjaitan, T.; Quigley, S.P.; McLennan, S.R.; Poppi, D.P. Effect of the concentration of Spirulina (Spirulina platensis) algae in the drinking water on water intake by cattle and the proportion of algae bypassing the rumen. Anim. Prod. Sci. 2010, 50, 405–409. [Google Scholar] [CrossRef]
- Panjaitan, T.; Quigley, S.P.; McLennan, S.R.; Swain, A.J.; Poppi, D.P. Spirulina (Spirulina platensis) algae supplementation increases microbial protein production and feed intake and decreases retention time of digesta in the rumen of cattle. Anim. Prod. Sci. 2015, 55, 535–543. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Pickard, R.M.; Beard, A.P.; Seal, C.J.; Edwards, S.A. Neonatal lamb vigour is improved by feeding docosahexaenoic acid in the form of algal biomass during late gestation. Animal 2008, 2, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Fievez, V.; Boeckaert, C.; Vlaeminck, B.; Mestdagh, J.; Demeyer, D. In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol. 2007, 136, 80–95. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Cabrita, A.R.J.; Maia, M.R.G.; Valente, I.M.; Engrola, S.; Fonseca, A.J.M.; Ribeiro, D.M.; Lordelo, M.; Martins, C.F.; Cunha, L.F.e.; et al. Microalgae as feed ingredients for livestock production and aquaculture. In Microalgae—Cultivation, Recovery of Compounds and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 239–312. [Google Scholar]
- Archibeque, S.L.; Ettinger, A.; Willson, B.D. Nannochloropsis oculata as a source for animal feed. Acta Agron. Hung. 2009, 57, 245–248. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Hamdon, H.A. Performance and milk composition of nubian goats as affected by increasing level of Nannochloropsis oculata Microalgae. Animals 2020, 10, 2453. [Google Scholar] [CrossRef]
- Da Silva, G.G.; de Jesus, E.F.; Takiya, C.S.; del Valle, T.A.; da Silva, T.H.; Vendramini, T.H.A.; Yu, E.J.; Rennó, F.P. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. J. Dairy Sci. 2016, 99, 8880–8884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, R.S.; van Emon, M.L.; Loy, D.D.; Hansen, S.L. Assessment of algae meal as a ruminant feedstuff: Nutrient digestibility in sheep as a model species. J. Anim. Sci. 2015, 93, 5386–5394. [Google Scholar] [CrossRef] [PubMed]
- Moate, P.J.; Williams, S.R.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Till, B.E.; Huntington, J.A.; Posri, W.; Early, R.; Taylor-Pickard, J.; Sinclair, L.A. Influence of rate of inclusion of microalgae on the sensory characteristics and fatty acid composition of cheese and performance of dairy cows. J. Dairy Sci. 2019, 102, 10934–10946. [Google Scholar] [CrossRef] [PubMed]
- Till, B.E.; Huntington, J.A.; Kliem, K.E.; Taylor-Pickard, J.; Sinclair, L.A. Long term dietary supplementation with microalgae increases plasma docosahexaenoic acid in milk and plasma but does not affect plasma 13,14-dihydro-15-keto PGF2α concentration in dairy cows. J. Dairy Res. 2020, 87, 14–22. [Google Scholar] [CrossRef]
- Sérot, T.; Regost, C.; Arzel, J. Identification of odour-active compounds in muscle of brown trout (Salmo trutta) as affected by dietary lipid sources. J. Sci. Food Agric. 2002, 82, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Van Emon, M.L.; Loy, D.D.; Hansen, S.L. Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae. J. Anim. Sci. 2015, 93, 3121–3129. [Google Scholar] [CrossRef] [Green Version]
- Owens, F.; Goetsch, A. Ruminal fermentation. In The Ruminant Animal: Digestive Physiology and Nutrition; Church, D.C., Ed.; Waveland Press: Long Grove, IL, USA, 1993; pp. 145–171. [Google Scholar]
- Dewhurst, R.J.; Davies, D.R.; Merry, R.J. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 2000, 85, 1–21. [Google Scholar] [CrossRef]
- Poppi, D.P.; McLennan, S.R. Protein and energy utilization by ruminants at pasture. J. Anim. Sci. 1995, 73, 278–290. [Google Scholar] [CrossRef]
- Leng, R.A. Factors affecting the utilization of "poor-quality" forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Newbold, C.J.; van Nevel, C.J.; Demeyer, D.I. Manipulation of ruminal fermentation. In The Rumen Microbial Ecosystem No. 1; Hobson, P.N., Stewart, C.S., Eds.; Blackie Academic & Professional: London, UK, 1997; pp. 523–632. [Google Scholar]
- Bourges, H.; Sotomayor, A.; Mendoza, E.; Chavez, A. Utilization of the alga Spirulina as a protein source. Nutr. Rep. Int. 1971, 4, 31–43. [Google Scholar]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy 2019, 11, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Hippenstiel, F.; Kivitz, A.; Benninghoff, J.; Südekum, K.H. Estimation of intestinal protein digestibility of protein supplements for ruminants using a three-step enzymatic in vitro procedure. Arch. Anim. Nutr. 2015, 69, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Bowen, M.K.; Poppi, D.P.; McLennan, S.R. Efficiency of rumen microbial protein synthesis in cattle grazing tropical pastures as estimated by a novel technique. Anim. Prod. Sci. 2017, 57, 1702–1712. [Google Scholar] [CrossRef]
- Commonwealth Scientific and Industrial Research Organization. Nutrient Requirements of Domesticated Ruminants; CSIRO Publications: Collinwood, VIC, Australia, 2007. [Google Scholar]
- Koletzko, B.; Schmidt, E.; Bremer, H.J.; Haug, M.; Harzer, G. Effects of dietary long-chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. Eur. J. Pediatr. 1989, 148, 669–675. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Birch, E.E.; Birch, D.G.; Uauy, R.D. Effects of supplementation with omega 3 long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am. J. Clin. Nutr. 1993, 57, 807S–812S. [Google Scholar] [CrossRef]
- SanGiovanni, J.P.; Parra-Cabrera, S.; Colditz, G.A.; Berkey, C.S.; Dwyer, J.T. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatrics 2000, 105, 1292–1298. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dhanoa, M.S.; Choi, N.J.; Maeng, W.J.; Enser, M. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J. Agric. Sci. 2001, 136, 345–355. [Google Scholar] [CrossRef]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef]
- Jiang, Y.; Fan, K.-W.; Wong, R.T.; Chen, F. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 2004, 52, 1196–2000. [Google Scholar] [CrossRef]
- Hauvermale, A.; Kunera, J.; Rosenzweiga, B.; Guerrab, D.; Diltza, S.; Metza, J.G. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 2006, 41, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Van Pelt, C.K.; Huang, M.-C.; Tschanz, C.L.; Brenna, J.T. An octaene fatty acid, 4,7,10,13,16,19,22,25- octacosaoctaenoic acid (28:8n;–3), found in marine oils. J. Lipid Res. 1999, 40, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Or-Rashid, M.M.; Kramer, J.K.G.; Wood, M.A.; McBride, B.W. Supplemental algal meal alters the ruminal trans-18:1 fatty acid and conjugated linoleic acid composition in cattle. J. Anim. Sci. 2008, 86, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ashes, J.R.; Siebert, B.D.; Gulati, S.K.; Cuthbertson, A.Z.; Scott, T.W. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids 1992, 27, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Polan, C.E.; McNeill, J.J.; Tove, S.B. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 1964, 88, 1056–1064. [Google Scholar] [CrossRef] [Green Version]
- Sehat, N.; Rickert, R.; Mossoba, M.; Kramer, J.; Yurawecz, M.; Roach, J.; Adlof, R.; Morehouse, K.; Fritsche, J.; Eulitz, K.; et al. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography. Lipids 1999, 34, 407–413. [Google Scholar] [CrossRef]
- Smith, S.B.; Kawachi, H.; Choi, C.B.; Choi, C.W.; Wu, G.; Sawyer, J.E. Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 2008, 87, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Mattos, R.; Staples, C.R.; Thatcher, W.W. Effects of dietary fatty acids on reproduction in ruminants. Rev. Reprod. 2000, 5, 38–45. [Google Scholar] [CrossRef]
- Staples, C.R.; Burke, J.M.; Thatcher, W.W. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy Sci. 1998, 81, 856–871. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Sun, X.Q.; Gibbs, S.J.; Poppi, D.P. Small differences in biohydrogenation resulted from the similar retention times of fluid in the rumen of cattle grazing wet season C3 and C4 forage species. Anim. Feed Sci. Technol. 2019, 253, 101–112. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Sun, X.Q.; Gibbs, S.J.; Poppi, D.P. The inclusion of low quantities of lipids in the diet of ruminants fed low quality forages has little effect on rumen function. Anim. Feed Sci. Technol. 2017, 234, 20–28. [Google Scholar] [CrossRef]
- Costa, D.F.A. Cattle responses to small inclusions of lipids in the diet. Appl. Food Sci. J. 2018, 2, 21. [Google Scholar]
- McCauley, J.; Labeeuw, L.; Jaramillo-Madrid, A.; Nguyen, L.; Nghiem, L.; Chaves, A.; Ralph, P. Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Curr. Pollut. Rep. 2020, 6, 188–205. [Google Scholar] [CrossRef]
- Almeida, A.K.; Hegarty, R.S.; Cowie, A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim. Nutr. 2021, 7, 1219–1230. [Google Scholar] [CrossRef]
- Lean, I.J.; Golder, H.M.; Grant, T.M.D.; Moate, P.J. A meta-analysis of effects of feeding seaweed on beef and dairy cattle performance and methane yield. PLoS ONE 2021, 16, e0249053. [Google Scholar] [CrossRef]
- Glasson, C.R.K.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Klieve, A.; Harper, K.; Martinez, E.; Ouwerkerk, D. Increasing Productivity and Reducing Methane Emissions by Supplementing Feed with Dietary Lipids; Meat & Livestock Australia: Sydney, NSW, Australia, 2012. [Google Scholar]
- Sucu, E. Effects of Microalgae Species on Rumen Fermentation Pattern and Methane Production. Ann. Anim. Sci. 2020, 20, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Kiani, A.; Wolf, C.; Giller, K.; Eggerschwiler, L.; Kreuzer, M.; Schwarm, A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Can. J. Anim. Sci. 2020, 100, 485–493. [Google Scholar] [CrossRef]
- Meehan, D.J.; Cabrita, A.R.J.; Silva, J.L.; Fonseca, A.J.M.; Maia, M.R.G. Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. Algal Res. 2021, 56, 102284. [Google Scholar] [CrossRef]
- Roselet, F.; Vandamme, D.; Muylaert, K.; Abreu, P.C. Harvesting of Microalgae for Biomass Production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M.A., Wang, Z., Eds.; Springer Singapore: Singapore, 2019; pp. 211–243. [Google Scholar]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell Publishing Company: Oxford, UK, 2004. [Google Scholar]
- Zullaikah, S.; Utomo, A.T.; Yasmin, M.; Ong, L.K.; Ju, Y.H. Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. In Advances in Eco-Fuels for a Sustainable Environment; Azad, K., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 237–276. [Google Scholar]
- Radmann, E.M.; Reinehr, C.O.; Costa, J.A.V. Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture 2007, 265, 118–126. [Google Scholar] [CrossRef]
- Tiburcio, P.C.; Galvez, F.C.F.; Cruz, L.J.; Gavino, V.C. Determination of shelf life of Spirulina platensis (MI2) grown in the Philippines. J. Appl. Phycol. 2007, 19, 727–731. [Google Scholar] [CrossRef]
- Caroppo, C. Using Satellite Remote Sensing of Harmful Algal Blooms (HABs) in a Coastal European Site. Phycologia 2017, 56, 28. [Google Scholar]
- Omidi, A.; Pflugmacher, S.; Kaplan, A.; Kim, Y.J.; Esterhuizen, M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021, 9, 1583. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.F.A.; Poppi, D.P.; McLennan, S.R. Beef cattle production in northern Australia—Management and supplementation strategies. In Proceedings of the 7th International Congress on Beef Cattle, Sao Pedro, SP, Brazil, 19–21 December 2012; p. 19. [Google Scholar]
- Williams, T.; Wilson, C.; Wynn, P.; Costa, D. Opportunities for precision livestock management in the face of climate change: A focus on extensive systems. Anim. Front. 2021, 11, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Bogush, A.; Edwards, P.; Stanley, P.; Lombardi, A.T.; Campos, L.C. Bioaccumulation of metals by algae from acid mine drainage: A case study of Frongoch Mine (UK). Environ. Sci. Pollut. Res. 2022, 29, 32261–32270. [Google Scholar] [CrossRef]
- Baweja, P.; Kumar, S.; Kumar, G. Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.-S., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 353–370. [Google Scholar]
- Magnusson, M.; Vucko, M.J.; Neoh, T.L.; de Nys, R. Using oil immersion to deliver a naturally-derived, stable bromoform product from the red seaweed Asparagopsis taxiformis. Algal Res. 2020, 51, 102065. [Google Scholar] [CrossRef]
- Rinehart, K.; Namikoshi, M.; Choi, B. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 1994, 6, 159–176. [Google Scholar] [CrossRef]
- Hammond, B.G.; Mayhew, D.A.; Holson, J.F.; Nemec, M.D.; Mast, R.W.; Sander, W.J. Safety assessment of DHA-rich microalgae from Schizochytrium sp.: II. Developmental toxicity evaluation in rats and rabbits. Regul. Toxicol. Pharmacol. 2001, 33, 205–217. [Google Scholar] [CrossRef]
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council. Energy and Protein Requirements of Ruminants; CABI International: Wallingford, UK, 1993. [Google Scholar]
- Muizelaar, W.; Groot, M.; van Duinkerken, G.; Peters, R.; Dijkstra, J. Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods 2021, 10, 584. [Google Scholar] [CrossRef]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef]
- Hawkins, P.R.; Chandrasena, N.R.; Jones, G.J.; Humpage, A.R.; Falconer, I.R. Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon 1997, 35, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Lawton, L.A.; Codd, G.A. Cyanobacterial (Blue-Green Algal) Toxins and their Significance in UK and European Waters. Water Environ. J. 1991, 5, 460–465. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol. 1999, 70, 313–321. [Google Scholar] [CrossRef]
- Gieseck, D.; Tiemeyer, W. Availability and metabolism of purines of single-cell proteins in monogastric animals. Proc. Nutr. Soc. 1982, 41, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.H.; McAllan, A.B. Nucleic acid metabolism in the ruminant. Br. J. Nutr. 1970, 24, 545–556. [Google Scholar] [CrossRef] [PubMed]
Study | Animals 1 | Basal Diet 2 | Algae Species | Doses | Diet Composition 3 | DMI (kg/d) 4 | Digestibility (g/kg) 3,4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g/kg DM | kg/d | g/kg BW | CP | EE | NDF | DM | OM | CP | NDF | |||||
[7] | Finnish Ayrshire lactating cows (112 + 21. 6 DIM; 36.2 + 3.77 kg/d MY; 652 + 79.5 kg BW) | Grass silage and concentrate. (Forage = 50%) | Control | 0 | 0 | 0 | 154 | 81.1 | 410 | 21.5 | 651 | 659 | 617 | 474 |
Arthrospira platensis | 50.9 | 1.12 | 1.72 | 153 | 87.3 | 424 | 22.0 | 641 | 650 | 602 | 504 | |||
Chlorella vulgaris | 64.6 | 1.35 | 2.07 | 154 | 92.4 | 409 | 20.9 | 650 | 661 | 609 | 491 | |||
C. vulgaris + Nannochloropsis gaditana5 | 75.5 | 1.63 | 2.50 | 150 | 88.0 | 421 | 21.6 | 651 | 661 | 606 | 516 | |||
ns | ns | ns | ns | ns | ||||||||||
[36] | Holstein lactating cows (163 + 9.2 DIM; 20.0 + 3.11 kg/d MY; 571 + 48.1 kg BW) | Alfalfa hay and concentrate (Forage = 75%) | Control | 0 | 0 | 0 | 199 | 30.9 | 370 | 22.1 | ||||
Schizochytrium DHA-Gold | 5.58 | 0.125 | 0.22 | 199 | 33.6 | 370 | 22.4 | |||||||
Schizochytrium DHA-Gold | 11.7 | 0.25 | 0.44 | 200 | 37.2 | 366 | 21.3 | |||||||
Schizochytrium DHA-Gold | 18.3 | 0.375 | 0.66 | 201 | 28.9 | 363 | 20.5 | |||||||
Linear decrease | ||||||||||||||
[34] | Holstein lactating cows (57.7 + 49.4 DIM; 25.3 + 5.3 kg/d MY; 590 + 71 kg BW) | TMR corn silage-based (Forage = 50%) | Control | 0 | 0 | 0 | 166 | 37.6 | 333 | 22 | 737 | 760 | 737 | 668 |
Prototheca moriformis | 52.3 | 1.18 | 2.00 | 163 | 39.5 | 345 | 22.6 | 736 | 758 | 723 | 666 | |||
ns | ns | ns | ns | ns | ||||||||||
[37] | Holstein lactating cows (77 + 17 DIM; 44 + 1.9 kg/d MY; 654 + 42.4 kg BW) | TMR corn silage-based (Forage = 55%) | Control | 0 | 0 | 0 | 166 | 452 | 23.7 | |||||
Schizochytrium limacinum | 2.15 | 0.05 | 0.076 | 170 | 455 | 23.3 | ||||||||
Schizochytrium limacinum | 4.33 | 0.1 | 0.153 | 165 | 452 | 23.1 | ||||||||
Schizochytrium limacinum | 6.44 | 0.15 | 0.229 | 164 | 460 | 23.3 | ||||||||
ns | ||||||||||||||
[38] | Holstein lactating cows (22 + 0.5 kg/d MY) | TMR corn silage-based (Forage = 55%) | Control | 0 | 0 | 0 | 163 | 419 | 22.1 | |||||
Schizochytrium limacinum | 4.55 | 0.1 | 0.153 | 161 | 419 | 22 | ||||||||
ns | ||||||||||||||
[5] | Bos indicus steers (187 + 7.5 kg BW) | Speargrass (24 g CP/kg DM, 695 g NDF/kg DM) (Forage > 66%) | Control | 0 | 0 | 0 | 24 | 20 | 695 | 2.35a | 418ab | |||
Arthrospira platensis | 188.7 | 0.748 | 4 | 168 | 38.8 | 564 | 3.96c | 455ab | ||||||
Chlorella pyrenoidosa | 258.2 | 0.879 | 4.7 | 186 | 52.5 | 497 | 3.40b | 479b | ||||||
Dunaliella salina | 52.2 | 0.131 | 0.7 | 35.6 | 24.6 | 650 | 2.51a | 412a | ||||||
Cottonseed meal | 279.1 | 1.12 | 6 | 172 | 26.5 | 537 | 4.02c | 476b | ||||||
[5] | Bos indicus steers (236 kg BW) | Speargrass (33 g CP/kg DM, 689 g NDF/kg DM) (Forage > 66%) | Control | 0 | 0 | 0 | 33 | 20 | 689 | 2.35a | 418ab | |||
Arthrospira platensis | 188.7 | 0.133 | 0.71 | Quadratic increase | Linear increase | |||||||||
Arthrospira platensis | 258.2 | 0.264 | 1.41 | |||||||||||
Arthrospira platensis | 52.2 | 0.529 | 2.83 | |||||||||||
Arthrospira platensis | 279.1 | 0.79 | 4.23 | |||||||||||
[27] | Brahman-Shorthorn cross steers (250.1 + 10.86 kg BW) | Mitchell grass (38.1 g CP/kg DM; 746 g NDF/kg DM) (Forage > 98%) | Control | 0 | 0 | Quadratic increase | Quadratic increase | |||||||
Arthrospira platensis | 0.125 | 0.5 | ||||||||||||
Arthrospira platensis | 0.35 | 1.4 | ||||||||||||
Arthrospira platensis | 0.625 | 2.5 | ||||||||||||
Arthrospira platensis | 1.525 | 6.1 | ||||||||||||
[40] | Steers (292 + 22.4 kg BW) | Wet corn gluten feed + Bromegrass hay (Forage = 15%) | Control | 0 | 0 | 0 | 177 | 21 | 467 | 7.19 | ||||
Algae meal | 150 | 1.14 | 0.44 | 164 | 27 | 450 | 7.57 | |||||||
Algae meal | 300 | 2.53 | 0.99 | 150 | 36 | 433 | 8.42 | |||||||
Algae meal | 450 | 3.98 | 1.56 | 136 | 43 | 416 | 8.85 | |||||||
Linear increase | ||||||||||||||
[35] | Whiteface cross wethers (23.0 + 0.54 kg BW) | Grass hay and concentrate (Forage = 8%) | Control | 0 | 0 | 0 | 120 | 35.9 | 484 | 1.31 | 727 | 736 | 602 | 655 |
Prototheca moriformis | 100 | 0.114 | 4.96 | 122 | 41.7 | 442 | 1.14 | 721 | 729 | 589 | 613 | |||
Prototheca moriformis | 200 | 0.254 | 11.0 | 121 | 37.3 | 389 | 1.27 | 703 | 710 | 580 | 536 | |||
Prototheca moriformis | 300 | 0.36 | 15.7 | 120 | 40.8 | 323 | 1.2 | 684 | 691 | 572 | 390 | |||
ns | L | L | L | L | ||||||||||
[35] | Whiteface cross wethers (33.7 + 0.55 kg BW) | Grass hay and concentrate (Forage = 10%) | Control | 0 | 0 | 0 | 110 | 28.9 | 252 | 1.04 | 751 | 764 | 685 | 375 |
Prototheca moriformis | 150 | 0.173 | 5.12 | 113 | 32.9 | 297 | 1.15 | 733 | 745 | 670 | 429 | |||
Prototheca moriformis | 300 | 0.387 | 11.5 | 110 | 39.1 | 330 | 1.29 | 698 | 707 | 618 | 447 | |||
Prototheca moriformis | 450 | 0.536 | 15.9 | 112 | 43.8 | 351 | 1.19 | 680 | 689 | 591 | 449 | |||
Prototheca moriformis | 600 | 0.696 | 20.7 | 112 | 47.6 | 402 | 1.16 | 675 | 680 | 593 | 507 | |||
ns | L | L | L | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, D.F.A.; Castro-Montoya, J.M.; Harper, K.; Trevaskis, L.; Jackson, E.L.; Quigley, S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms 2022, 10, 2313. https://doi.org/10.3390/microorganisms10122313
Costa DFA, Castro-Montoya JM, Harper K, Trevaskis L, Jackson EL, Quigley S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms. 2022; 10(12):2313. https://doi.org/10.3390/microorganisms10122313
Chicago/Turabian StyleCosta, Diogo Fleury Azevedo, Joaquín Miguel Castro-Montoya, Karen Harper, Leigh Trevaskis, Emma L. Jackson, and Simon Quigley. 2022. "Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production" Microorganisms 10, no. 12: 2313. https://doi.org/10.3390/microorganisms10122313
APA StyleCosta, D. F. A., Castro-Montoya, J. M., Harper, K., Trevaskis, L., Jackson, E. L., & Quigley, S. (2022). Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms, 10(12), 2313. https://doi.org/10.3390/microorganisms10122313