Identification of Leishmania infantum Epidemiology, Drug Resistance and Pathogenicity Biomarkers with Nanopore Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Extraction and Sequencing
2.3. Bioinformatic Analysis
2.3.1. Identification, Typing, and Phylogeny
2.3.2. Aneuploidy and Gene Copy Number Variation Analysis
2.4. Data Availability
3. Results
3.1. Identification, Typing, and Phylogeny
3.1.1. Aneuploidy Analysis
3.1.2. CNV for Drug Resistance and Pathogenicity Biomarkers in L. infantum
4. Discussion
4.1. Identification, Typing, and Phylogeny
4.2. Detection of Aneuploidy and Gene Copy Number Variation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, A.; Zampieri, R.A.; Shaw, J.J.; Floeter-Winter, L.M.; Laranjeira-Silva, M.F. One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools. Pathogens 2020, 9, 809. [Google Scholar] [CrossRef]
- Millán, J.; Ferroglio, E.; Solano-Gallego, L. Role of Wildlife in the Epidemiology of Leishmania Infantum Infection in Europe. Parasitol. Res. 2014, 113, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Galán-Puchades, M.T.; Solano, J.; González, G.; Osuna, A.; Pascual, J.; Bueno-Marí, R.; Franco, S.; Peracho, V.; Montalvo, T.; Fuentes, M.V. Molecular Detection of Leishmania Infantum in Rats and Sand Flies in the Urban Sewers of Barcelona, Spain. Parasites Vectors 2022, 15, 211. [Google Scholar] [CrossRef] [PubMed]
- Van Griensven, J.; Diro, E. Visceral Leishmaniasis. Infect. Dis. Clin. 2019, 33, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Sterkers, Y.; Lachaud, L.; Crobu, L.; Bastien, P.; Pagès, M. FISH Analysis Reveals Aneuploidy and Continual Generation of Chromosomal Mosaicism in Leishmania Major. Cell. Microbiol. 2011, 13, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Prieto Barja, P.; Pescher, P.; Bussotti, G.; Dumetz, F.; Imamura, H.; Kedra, D.; Domagalska, M.; Chaumeau, V.; Himmelbauer, H.; Pages, M.; et al. Haplotype Selection as an Adaptive Mechanism in the Protozoan Pathogen Leishmania Donovani. Nat. Ecol. Evol. 2017, 1, 1961–1969. [Google Scholar] [CrossRef] [Green Version]
- Ubeda, J.-M.; Raymond, F.; Mukherjee, A.; Plourde, M.; Gingras, H.; Roy, G.; Lapointe, A.; Leprohon, P.; Papadopoulou, B.; Corbeil, J.; et al. Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biol. 2014, 12, e1001868. [Google Scholar] [CrossRef] [Green Version]
- Bussotti, G.; Gouzelou, E.; Côrtes Boité, M.; Kherachi, I.; Harrat, Z.; Eddaikra, N.; Mottram, J.C.; Antoniou, M.; Christodoulou, V.; Bali, A.; et al. Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. mBio 2018, 9, e01399-18. [Google Scholar] [CrossRef] [Green Version]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug Resistance and Treatment Failure in Leishmaniasis: A 21st Century Challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef] [Green Version]
- Yasur-Landau, D.; Jaffe, C.L.; David, L.; Doron-Faigenboim, A.; Baneth, G. Resistance of Leishmania Infantum to Allopurinol Is Associated with Chromosome and Gene Copy Number Variations Including Decrease in the S-Adenosylmethionine Synthetase (METK) Gene Copy Number. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 403–410. [Google Scholar] [CrossRef]
- Kaufer, A.; Barratt, J.; Stark, D.; Ellis, J. The Complete Coding Region of the Maxicircle as a Superior Phylogenetic Marker for Exploring Evolutionary Relationships between Members of the Leishmaniinae. Infect. Genet. Evol. 2019, 70, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Solana, J.C.; Chicharro, C.; García, E.; Aguado, B.; Moreno, J.; Requena, J.M. Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes 2022, 13, 1070. [Google Scholar] [CrossRef] [PubMed]
- Franssen, S.U.; Durrant, C.; Stark, O.; Moser, B.; Downing, T.; Imamura, H.; Dujardin, J.-C.; Sanders, M.J.; Mauricio, I.; Miles, M.A.; et al. Global Genome Diversity of the Leishmania Donovani Complex. eLife 2020, 9, e51243. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.; Urban, A.E.; Mills, R.E. Structural Variation in the Sequencing Era. Nat. Rev. Genet. 2020, 21, 171–189. [Google Scholar] [CrossRef]
- Aird, D.; Ross, M.G.; Chen, W.-S.; Danielsson, M.; Fennell, T.; Russ, C.; Jaffe, D.B.; Nusbaum, C.; Gnirke, A. Analyzing and Minimizing PCR Amplification Bias in Illumina Sequencing Libraries. Genome Biol. 2011, 12, R18. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST plus: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [Green Version]
- González-de la Fuente, S.; Peiró-Pastor, R.; Rastrojo, A.; Moreno, J.; Carrasco-Ramiro, F.; Requena, J.M.; Aguado, B. Resequencing of the Leishmania Infantum (Strain JPCM5) Genome and de Novo Assembly into 36 Contigs. Sci. Rep. 2017, 7, 18050. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Li, H. A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical Parameter Estimation from Sequencing Data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Camacho, E.; Rastrojo, A.; Sanchiz, Á.; González-de la Fuente, S.; Aguado, B.; Requena, J.M. Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. Genes 2019, 10, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Chaisson, M.J.P. Lra: A Long Read Aligner for Sequences and Contigs. PLoS Comput. Biol. 2021, 17, e1009078. [Google Scholar] [CrossRef] [PubMed]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef] [Green Version]
- Carnielli, J.B.T.; Crouch, K.; Forrester, S.; Silva, V.C.; Carvalho, S.F.G.; Damasceno, J.D.; Brown, E.; Dickens, N.J.; Costa, D.L.; Costa, C.H.N.; et al. A Leishmania Infantum Genetic Marker Associated with Miltefosine Treatment Failure for Visceral Leishmaniasis. EBioMedicine 2018, 36, 83–91. [Google Scholar] [CrossRef] [Green Version]
- El Fadili, K.; Messier, N.; Leprohon, P.; Roy, G.; Guimond, C.; Trudel, N.; Saravia, N.G.; Papadopoulou, B.; Légaré, D.; Ouellette, M. Role of the ABC Transporter MRPA (PGPA) in Antimony Resistance in Leishmania Infantum Axenic and Intracellular Amastigotes. Antimicrob. Agents Chemother. 2005, 49, 1988–1993. [Google Scholar] [CrossRef] [Green Version]
- Kelly, B.L.; Stetson, D.B.; Locksley, R.M. Leishmania Major LACK Antigen Is Required for Efficient Vertebrate Parasitization. J. Exp. Med. 2003, 198, 1689–1698. [Google Scholar] [CrossRef] [Green Version]
- Rastrojo, A.; García-Hernández, R.; Vargas, P.; Camacho, E.; Corvo, L.; Imamura, H.; Dujardin, J.-C.; Castanys, S.; Aguado, B.; Gamarro, F.; et al. Genomic and Transcriptomic Alterations in Leishmania Donovani Lines Experimentally Resistant to Antileishmanial Drugs. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 246–264. [Google Scholar] [CrossRef]
- Andrade, J.M.; Baba, E.H.; Machado-de-Avila, R.A.; Chavez-Olortegui, C.; Demicheli, C.P.; Frézard, F.; Monte-Neto, R.L.; Murta, S.M.F. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species. Antimicrob. Agents Chemother. 2016, 60, 4482–4489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Victoria, F.J.; Sánchez-Cañete, M.P.; Castanys, S.; Gamarro, F. Phospholipid Translocation and Miltefosine Potency Require Both L. Donovani Miltefosine Transporter and the New Protein LdRos3 in Leishmania Parasites. J. Biol. Chem. 2006, 281, 23766–23775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, H.L.; Beverley, S.M. Heavy Metal Resistance: A New Role for P-Glycoproteins in Leishmania. J. Biol. Chem. 1991, 266, 18427–18430. [Google Scholar] [CrossRef]
- Douanne, N.; Dong, G.; Amin, A.; Bernardo, L.; Blanchette, M.; Langlais, D.; Olivier, M.; Fernandez-Prada, C. Leishmania Parasites Exchange Drug-Resistance Genes through Extracellular Vesicles. Cell Rep. 2022, 40, 111121. [Google Scholar] [CrossRef]
- Leprohon, P.; Legare, D.; Raymond, F.; Madore, E.; Hardiman, G.; Corbeil, J.; Ouellette, M. Gene Expression Modulation Is Associated with Gene Amplification, Supernumerary Chromosomes and Chromosome Loss in Antimony-Resistant Leishmania Infantum. Nucleic Acids Res. 2009, 37, 1387–1399. [Google Scholar] [CrossRef] [Green Version]
- Domagalska, M.A.; Imamura, H.; Sanders, M.; van den Broeck, F.; Bhattarai, N.R.; Vanaerschot, M.; Maes, I.; D’Haenens, E.; Rai, K.; Rijal, S.; et al. Genomes of Leishmania Parasites Directly Sequenced from Patients with Visceral Leishmaniasis in the Indian Subcontinent. PLoS Negl. Trop. Dis. 2019, 13, e0007900. [Google Scholar] [CrossRef] [Green Version]
- Dumetz, F.; Imamura, H.; Sanders, M.; Seblova, V.; Myskova, J.; Pescher, P.; Vanaerschot, M.; Meehan, C.J.; Cuypers, B.; de Muylder, G.; et al. Modulation of Aneuploidy in Leishmania Donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. MBio 2017, 8, e00599-17. [Google Scholar] [CrossRef]
Sample ID | Host | Type | Isolation | Year | Location |
---|---|---|---|---|---|
MHOM/TN/80/IPT-1 | Homo sapiens | VL | Unknown | 1980 | Monastir, Tunisia |
MHOM/ES/2016/CATB101 | Homo sapiens | VL | Spleen | 2016 | Mallorca area, Spain |
LCAN/ES/2020/CATB102 | Canis lupus familiaris | CL, VL | Lymph node aspirate | 2020 | Zaragoza area, Spain |
MCRI/ES/2006/CATB033 | Canis lupus familiaris, sub. Cricetus aureus | CL | Exudate | 2006 | Spain |
Biomarker | Gene ID | Start | End | Gene Name | Function | Gene CNVs | Resistance/Pathogenicity | Reference |
---|---|---|---|---|---|---|---|---|
Miltefosine sensitivity locus (MSL) | LinJ.31.2370 | 1,181,281 | 1,182,328 | LinJ.31.2370 | 3′-nuclease | Deletion (CN −2) | Miltefosine TF | [27] |
LinJ.31.2380 | 1,184,204 | 1,185,341 | LinJ.31.2380 | 3′-nuclease | ||||
LinJ.31.2390 | 1,185,826 | 1,188,553 | LinJ.31.2390 | Helicase-like protein | ||||
LinJ.31.2400 | 1,191,356 | 1,192,406 | LinJ.31.2400 | 3-2-trans-enoyl-CoA isomerase | ||||
Miltefosine transporter and associated genes | LinJ.13.1590 | 570,912 | 574,206 | LdMT | Phospholipid transport | Deletion (CN −1, −2) | Miltefosine R | [28] |
LinJ.13.1600 | 576,108 | 577,572 | Hypot. protein | Unknown | ||||
LinJ.32.1040 | 392,366 | 393,596 | ldRos3 | Vps23 core domain | ||||
LACK antigen | LinJ.28.2940 | 1,070,377 | 1,071,316 | LACK1 | Antigenic protein | Expansion | Pathogenicity | [29] |
LinJ.28.2970 | 1,074,409 | 1,075,348 | LACK2 | |||||
Paromomycin-resistant locus | LinJ.27.1940 | 942,538 | 944,020 | D-LDH | D-lactate dehydrogenase | Expansion (CN +1) | Paromomycin (PMM) R | [30] |
LinJ.27.1950 | 946,545 | 947,751 | B-CAT | Branched-chain amino acid aminotransferase | ||||
MAPK1 | LinJ.36.6760 | 2,564,560 | 2,565,637 | LMPK | Mitogen-activated protein kinase | Conflicting evidence | Trivalent antimonials R | [31] |
AQP1 | LinJ.31.0030 | 8,742 | 9,687 | AQP1 | Aquaglyceroporin 1 | Deletion (CN −1) | Trivalent antimonials R | [31] |
H locus | LinJ.23.0280 | 86,372 | 86,942 | YIP1 | Unknown | Expansion (CN +1) MRPA and PTR1 | Trivalent antimonials R | [28] |
LinJ.23.0290 | 88,619 | 93,329 | MRPA | ABC-thiol transporter | ||||
LinJ.23.0300 | 94,265 | 95,522 | LinJ.23.0300 | Arginosuccinate synthase | ||||
LinJ.23.0310 | 101,314 | 102,181 | PTR1 | Pteridine reductase 1 | ||||
METK locus | LinJ.30.3550 | 1,283,752 | 1,284,865 | Lorien protein | Deletion (CN −1) | Allopurinol R | [10] | |
LinJ.30.3560 | 1,285,559 | 1,286,738 | METK1 | S-adenosylmethionine synthetase | ||||
LinJ.30.3570 | 1,288,872 | 1,289,985 | Lorien protein | |||||
LinJ.30.3580 | 1,290,679 | 1,291,858 | METK2 | S-adenosylmethionine synthetase |
MHOM/TN/80/IPT-1 | MHOM/ES/2016/CATB101 | MCRI/ES/2006/CATB033 | LCAN/ES/2020/CATB102 | ||
---|---|---|---|---|---|
Miltefosine transporter and associated genes | CNV | CNV | CNV | CNV | |
LinJ.13.1590 | LdMT | 0, +1 | 0, +1 | −1 | 0 |
LinJ.13.1600 | Hypot. Protein | +1 | −1 | 0 | 0 |
LinJ.32.1040 | ldRos3 | −1 | 0 | −1 | 0 |
Miltefosine sensitivity locus (MSL) | CNV | CNV | CNV | CNV | |
LinJ.31.2370 * | LinJ.31.2370 | +4 | +1, +2 | +2 | +2 |
LinJ.31.2380 * | LinJ.31.2380 | +4 | +1, +2 | +2 | +1, +2 |
LinJ.31.2390 * | LinJ.31.2390 | +4, +5 | +1, +2 | +2 | +1, +2 |
LinJ.31.2400 * | LinJ.31.2400 | +3 | +2 | +2 | +1, +2 |
METK locus | CNV | CNV | CNV | CNV | |
LinJ.30.3550 | Lorien protein | 0 | +1, +2 | +1 | 0 |
LinJ.30.3560 | METK1 | −1 | +1 | +1 | 0 |
LinJ.30.3570 | Lorien protein | −1 | +1 | 0, +1 | −1 |
LinJ.30.3580 | METK2 | 0 | 0, +1 | 0, +1 | 0 |
H locus | CNV | CNV | CNV | CNV | |
LinJ.23.0280 | YIP1 | +6, +7 | +1 | 0, +1 | +1, +2 |
LinJ.23.0290 | MRPA | +5 | +1, +2 | 0, +1 | +1, +2 |
LinJ.23.0300 | LinJ.23.0300 | +5 | +2 | 0 | 0 |
LinJ.23.0310 | PTR1 | +4 | 0, +1 | −1 | +1 |
AQP1 | CNV | CNV | CNV | CNV | |
LinJ.31.0030 * | AQP1 | +5 | +1 | +1, +2 | +2, +3 |
MAPK1 | CNV | CNV | CNV | CNV | |
LinJ.36.6760 | LMPK | −1 | 0 | −1 | −1 |
Amphotericin | CNV | CNV | CNV | CNV | |
LinJ.2510 | SMT | 0 | 0, +1 | 0, +1 | 0 |
Paramomycin-resistant locus | CNV | CNV | CNV | CNV | |
LinJ.27.1940 | D-LDH | 0 | 0 | 0 | 0, +1 |
LinJ.27.1950 | B-CAT | −1 | 0, +1 | 0 | 0, +1 |
LACK antigen | CNV | CNV | CNV | CNV | |
LinJ.28.2940 | LACK1 | 0, +1 | 0, +1 | 0 | 0 |
LinJ.28.2970 | LACK2 | 0, +1 | 0, +1 | 0 | 0, +1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martí-Carreras, J.; Carrasco, M.; Gómez-Ponce, M.; Noguera-Julián, M.; Fisa, R.; Riera, C.; Alcover, M.M.; Roura, X.; Ferrer, L.; Francino, O. Identification of Leishmania infantum Epidemiology, Drug Resistance and Pathogenicity Biomarkers with Nanopore Sequencing. Microorganisms 2022, 10, 2256. https://doi.org/10.3390/microorganisms10112256
Martí-Carreras J, Carrasco M, Gómez-Ponce M, Noguera-Julián M, Fisa R, Riera C, Alcover MM, Roura X, Ferrer L, Francino O. Identification of Leishmania infantum Epidemiology, Drug Resistance and Pathogenicity Biomarkers with Nanopore Sequencing. Microorganisms. 2022; 10(11):2256. https://doi.org/10.3390/microorganisms10112256
Chicago/Turabian StyleMartí-Carreras, Joan, Marina Carrasco, Marcel Gómez-Ponce, Marc Noguera-Julián, Roser Fisa, Cristina Riera, Maria Magdalena Alcover, Xavier Roura, Lluís Ferrer, and Olga Francino. 2022. "Identification of Leishmania infantum Epidemiology, Drug Resistance and Pathogenicity Biomarkers with Nanopore Sequencing" Microorganisms 10, no. 11: 2256. https://doi.org/10.3390/microorganisms10112256