Molecular Characterization and Antibiotic Susceptibility of Non-PCV13 Pneumococcal Serotypes among Vaccinated Children in Cape Coast, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pneumococcal Isolates and Serotyping
2.2. Antibiotic Susceptibility Testing
2.3. Serotyping and Molecular Characterization of Pneumococcal Strains
2.4. Virulence Gene Determination
2.5. Multilocus Sequence Typing (MLST)
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Antibiotics Susceptibility Patterns of NVT Isolates
3.2. Characterization of Pneumococcal Virulence Genes
3.3. Phylogeny of NVT Serotype 23B
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wahl, B.; O’Brien, K.L.; Greenbaum, A.; Majumder, A.; Liu, L.; Chu, Y.; Lukšić, I.; Nair, H.; McAllister, D.A.; Campbell, H.; et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000–15. Lancet Glob. Health 2018, 6, e744–e757. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.S.; Diekema, D.J.; Heilmann, K.P.; Dohrn, C.L.; Riahi, F.; Doern, G.V. Changes in pneumococcal serotypes and antimicrobial resistance after introduction of the 13-valent conjugate vaccine in the United States. Antimicrob. Agents Chemother. 2014, 58, 6484–6489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.; Nguyen, C.D.; Dunne, E.M.; Kim Mulholland, E.; Mungun, T.; Pomat, W.S.; Rafai, E.; Satzke, C.; Weinberger, D.M.; Russell, F.M. Using pneumococcal carriage studies to monitor vaccine impact in low- and middle-income countries. Vaccine 2019, 37, 6299–6309. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Yun, K.W.; Choi, E.H.; Kim, S.J.; Lee, S.Y.; Lee, H.J. Changes in the Serotype Distribution among Antibiotic Resistant Carriage Streptococcus pneumonia isolates in Children after the Introduction of the Extended-Valency Pneumococcal Conjugate Vaccine. J. Korean Med. Sci. 2017, 32, 1431. [Google Scholar] [CrossRef]
- Choe, Y.J.; Lee, H.J.; Lee, H.; Oh, C.E.; Cho, E.Y.; Choi, J.H.; Kang, H.M.; Yoon, I.A.; Jung, H.J.; Choi, E.H. Emergence of antibiotic-resistant non-vaccine serotype pneumococci in nasopharyngeal carriage in children after the use of extended-valency pneumococcal conjugate vaccines in Korea. Vaccine 2016, 34, 4771–4776. [Google Scholar] [CrossRef]
- Administration, U.S.F.D. VAXNEUVANCE. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/vaxneuvance (accessed on 12 August 2021).
- Administration, U.S.F.D. PREVNAR20. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/prevnar-20 (accessed on 12 August 2021).
- European Commission Approves Merck’s VAXNEUVANCE™ (Pneumococcal 15-Valent Conjugate Vaccine) for Individuals 18 Years of Age and Older. Available online: https://www.merck.com/news/european-commission-approves-mercks-vaxneuvance-pneumococcal-15-valent-conjugate-vaccine-for-individuals-18-years-of-age-and-older/ (accessed on 30 May 2022).
- European Medicines Agency Approves Pfizer’s 20-Valent Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease and Pneumonia in Adults. Available online: https://www.pfizer.com/news/press-release/press-release-detail/european-medicines-agency-approves-pfizers-20-valent# (accessed on 30 May 2022).
- Odutola, A.; Ota, M.O.C.; Antonio, M.; Ogundare, E.O.; Saidu, Y.; Owiafe, P.K.; Worwui, A.; Idoko, O.T.; Owolabi, O.; Kampmann, B.; et al. Immunogenicity of pneumococcal conjugate vaccine formulations containing pneumococcal proteins, and immunogenicity and reactogenicity of co-administered routine vaccines—A phase II, randomised, observer-blind study in Gambian infants. Vaccine 2019, 37, 2586–2599. [Google Scholar] [CrossRef]
- Mills, R.O.; Abdullah, M.R.; Akwetey, S.A.; Sappor, D.C.; Cole, I.; Baffuor-Asare, M.; Bolivar, J.A.; Gamez, G.; van der Linden, M.P.G.; Hammerschmidt, S. Post-Vaccination Streptococcus pneumoniae Carriage and Virulence Gene Distribution among Children Less Than Five Years of Age, Cape Coast, Ghana. Microorganisms 2020, 8, 1987. [Google Scholar] [CrossRef]
- Lindstrand, A.; Galanis, I.; Darenberg, J.; Morfeldt, E.; Naucler, P.; Blennow, M.; Alfven, T.; Henriques-Normark, B.; Ortqvist, A. Unaltered pneumococcal carriage prevalence due to expansion of non-vaccine types of low invasive potential 8years after vaccine introduction in Stockholm, Sweden. Vaccine 2016, 34, 4565–4571. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, M.; Perniciaro, S.; Imohl, M. Increase of serotypes 15A and 23B in IPD in Germany in the PCV13 vaccination era. BMC Infect. Dis. 2015, 15, 207. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, S.L.; Barson, W.J.; Lin, P.L.; Romero, J.R.; Bradley, J.S.; Tan, T.Q.; Pannaraj, P.S.; Givner, L.B.; Hulten, K.G. Invasive Pneumococcal Disease in Children’s Hospitals: 2014–2017. Pediatrics 2019, 144, e20190567. [Google Scholar] [CrossRef]
- Heinsbroek, E.; Tafatatha, T.; Phiri, A.; Swarthout, T.D.; Alaerts, M.; Crampin, A.C.; Chisambo, C.; Mwiba, O.; Read, J.M.; French, N. Pneumococcal carriage in households in Karonga District, Malawi, before and after introduction of 13-valent pneumococcal conjugate vaccination. Vaccine 2018, 36, 7369–7376. [Google Scholar] [CrossRef] [PubMed]
- Lovlie, A.; Vestrheim, D.F.; Aaberge, I.S.; Steens, A. Changes in pneumococcal carriage prevalence and factors associated with carriage in Norwegian children, four years after introduction of PCV13. BMC Infect. Dis. 2020, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Spijkerman, J.; van Gils, E.J.M.; Veenhoven, R.H.; Hak, E.; Yzerman, F.; van der Ende, A.; Wijmenga-Monsuur, A.J.; van den Dobbelsteen, G.P.J.M.; Sanders, E.A.M. Carriage ofStreptococcus pneumoniae3 Years after Start of Vaccination Program, the Netherlands. Emerg. Infect. Dis. 2011, 17, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.L.; Deloria-Knoll, M.; Levine, O.S.; Stoszek, S.K.; Freimanis Hance, L.; Reithinger, R.; Muenz, L.R.; O’Brien, K.L. Systematic Evaluation of Serotypes Causing Invasive Pneumococcal Disease among Children Under Five: The Pneumococcal Global Serotype Project. PLoS Med. 2010, 7, e1000348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavalari, I.D.; Fuursted, K.; Krogfelt, K.A.; Slotved, H.C. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 24F in Denmark. Sci. Rep. 2019, 9, 5481. [Google Scholar] [CrossRef] [Green Version]
- Dayie, N.; Tettey, E.Y.; Newman, M.J.; Bannerman, E.; Donkor, E.S.; Labi, A.K.; Slotved, H.C. Pneumococcal carriage among children under five in Accra, Ghana, five years after the introduction of pneumococcal conjugate vaccine. BMC Pediatr. 2019, 19, 316. [Google Scholar] [CrossRef] [PubMed]
- Satzke, C.; Turner, P.; Virolainen-Julkunen, A.; Adrian, P.V.; Antonio, M.; Hare, K.M.; Henao-Restrepo, A.M.; Leach, A.J.; Klugman, K.P.; Porter, B.D.; et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: Updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine 2013, 32, 165–179. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; Volume 37. [Google Scholar]
- Streptococcus Laboratory Resources and Protocols. Available online: https://www.cdc.gov/streplab/pneumococcus/resources.html (accessed on 6 February 2018).
- Source of Isolates Submitted to the Streptococcus pneumoniae Database. Available online: https://pubmlst.org/spneumoniae/ (accessed on 3 May 2020).
- PHYLOViZ. Available online: https://www.phyloviz.net/ (accessed on 18 May 2020).
- Renner, L.A.; Usuf, E.; Mohammed, N.I.; Ansong, D.; Dankwah, T.; Kusah, J.T.; Owusu, S.K.; Awunyo, M.; Arhin, B.; Addo, Y.; et al. Hospital-based Surveillance for Pediatric Bacterial Meningitis in the Era of the 13-Valent Pneumococcal Conjugate Vaccine in Ghana. Clin. Infect. Dis. 2019, 69, S89–S96. [Google Scholar] [CrossRef]
- Boettiger, D.C.; Law, M.G.; Sohn, A.H.; Davies, M.-A.; Wools-Kaloustian, K.; Leroy, V.; Yotebieng, M.; Vinikoor, M.; Vreeman, R.; Amorissani-Folquet, M.; et al. Temporal Trends in Co-trimoxazole Use Among Children on Antiretroviral Therapy and the Impact of Co-trimoxazole on Mortality Rates in Children Without Severe Immunodeficiency. J. Pediatr. Infect. Dis. Soc. 2019, 8, 450–460. [Google Scholar] [CrossRef]
- Birindwa, A.M.; Emgard, M.; Norden, R.; Samuelsson, E.; Geravandi, S.; Gonzales-Siles, L.; Muhigirwa, B.; Kashosi, T.; Munguakonkwa, E.; Manegabe, J.T.; et al. High rate of antibiotic resistance among pneumococci carried by healthy children in the eastern part of the Democratic Republic of the Congo. BMC Pediatr. 2018, 18, 361. [Google Scholar] [CrossRef]
- Skosana, Z.; Von Gottberg, A.; Olorunju, S.; Mohale, T.; Du Plessis, M.; Adams, T.; Mbelle, N. Non-vaccine serotype pneumococcal carriage in healthy infants in South Africa following introduction of the 13-valent pneumococcal conjugate vaccine. S. Afr. Med. J. Suid-Afrik. Tydskr. Vir Geneeskd. 2021, 111, 143–148. [Google Scholar] [CrossRef]
- Metcalf, B.J.; Gertz, R.E.; Gladstone, R.A.; Walker, H.; Sherwood, L.K.; Jackson, D.; Li, Z.; Law, C.; Hawkins, P.A.; Chochua, S.; et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin. Microbiol. Infect. 2016, 22, 60.e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwambana-Adams, B.A.; Asiedu-Bekoe, F.; Sarkodie, B.; Afreh, O.K.; Kuma, G.K.; Owusu-Okyere, G.; Foster-Nyarko, E.; Ohene, S.-A.; Okot, C.; Worwui, A.K.; et al. An outbreak of pneumococcal meningitis among older children (≥5 years) and adults after the implementation of an infant vaccination programme with the 13-valent pneumococcal conjugate vaccine in Ghana. BMC Infect. Dis. 2016, 16, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewe, T.C.M.; D’Aeth, J.C.; Croucher, N.J. Genomic epidemiology of penicillin-non-susceptible Streptococcus pneumoniae. Microb. Genom. 2019, 5, mgen000305. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, R.Y.; Bootsma, H.J.; den Heijer, C.D.J.; Pluister, G.N.; John Paget, W.; Spreeuwenberg, P.; Trzcinski, K.; Stobberingh, E.E. Distribution of serotypes and patterns of antimicrobial resistance among commensal Streptococcus pneumoniae in nine European countries. BMC Infect. Dis. 2018, 18, 440. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.O.; Twum-Danso, K.; Owusu-Agyei, S.; Donkor, E.S. Epidemiology of pneumococcal carriage in children under five years of age in Accra, Ghana. Infect. Dis. 2015, 47, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Dayie, N.T.; Arhin, R.E.; Newman, M.J.; Dalsgaard, A.; Bisgaard, M.; Frimodt-Moller, N.; Slotved, H.C. Multidrug-Resistant Streptococcus pneumoniae Isolates from Healthy Ghanaian Preschool Children. Microb. Drug Resist. 2015, 21, 636–642. [Google Scholar] [CrossRef]
- Mwenya, D.M.; Charalambous, B.M.; Phillips, P.P.; Mwansa, J.C.; Batt, S.L.; Nunn, A.J.; Walker, S.; Gibb, D.M.; Gillespie, S.H. Impact of cotrimoxazole on carriage and antibiotic resistance of Streptococcus pneumoniae and Haemophilus influenzae in HIV-infected children in Zambia. Antimicrob. Agents Chemother. 2010, 54, 3756–3762. [Google Scholar] [CrossRef] [Green Version]
- Hjalmarsdottir, M.A.; Petursdottir, B.; Erlendsdottir, H.; Haraldsson, G.; Kristinsson, K.G. Prevalence of pilus genes in pneumococci isolated from healthy preschool children in Iceland: Association with vaccine serotypes and antibiotic resistance. J. Antimicrob. Chemother. 2015, 70, 2203–2208. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchiya, M.; Urushibara, N.; Aung, M.S.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Serotype distribution, antimicrobial resistance and prevalence of pilus islets in pneumococci following the use of conjugate vaccines. J. Med. Microbiol. 2017, 66, 643–650. [Google Scholar] [CrossRef]
- Pneumococcal Molecular Epidemiology Network. Available online: https://www.pneumogen.net/pmen/ (accessed on 15 June 2020).
- Pai, R.; Gertz, R.E.; Whitney, C.G.; Beall, B. Clonal Association between Streptococcus pneumoniae Serotype 23A, Circulating within the United States, and an Internationally Dispersed Clone of Serotype 23F. J. Clin. Microbiol. 2005, 43, 5440–5444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravenscroft, N.; Omar, A.; Hlozek, J.; Edmonds-Smith, C.; Follador, R.; Serventi, F.; Lipowsky, G.; Kuttel, M.M.; Cescutti, P.; Faridmoayer, A. Genetic and structural elucidation of capsular polysaccharides from Streptococcus pneumoniae serotype 23A and 23B, and comparison to serotype 23F. Carbohydr. Res. 2017, 450, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Sabharwal, V.; Stevenson, A.; Figueira, M.; Orthopoulos, G.; Trzciński, K.; Pelton, S.I. Capsular switching as a strategy to increase pneumococcal virulence in experimental otitis media model. Microbes Infect. 2014, 16, 292–299. [Google Scholar] [CrossRef]
- Rose, M.A.; Laurenz, M.; Sprenger, R.; Imöhl, M.; van der Linden, M. Nasopharyngeal Carriage in Children After the Introduction of Generalized Infant Pneumococcal Conjugate Vaccine Immunization in Germany. Front. Med. 2021, 8, 1509. [Google Scholar] [CrossRef] [PubMed]
- Golden, A.R.; Adam, H.J.; Karlowsky, J.A.; Baxter, M.; Nichol, K.A.; Martin, I.; Demczuk, W.; Van Caeseele, P.; Gubbay, J.B.; Lefebvre, B.; et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: The SAVE study, 2011–2015. J. Antimicrob. Chemother. 2018, 73, vii20–vii31. [Google Scholar] [CrossRef] [PubMed]
Pneumococcal Isolates | Antibiotic Non-Susceptibility | Virulence Genes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Serotypes | Number | CRO | ERY | CLI | TET | CHL | COT | PEN | MDR | pcpA | psrP | PI-1 | PI-2 |
23B | 22 | 0 | 4.5 | 4.5 | 50 | 12.5 | 86.4 | 72.7 | 45.5 | 95.5 | 36.4 | 0 | 4.5 |
13 | 11 | 0 | 0 | 0 | 72.7 | 27.3 | 72.7 | 0 | 0 | 100 | 90.9 | 9.1 | 0 |
11A | 8 | 0 | 0 | 0 | 12.5 | 0 | 87.5 | 12.5 | 0 | 100 | 87.5 | 12.5 | 0 |
15B | 8 | 0 | 0 | 0 | 25 | 12.5 | 100 | 0 | 0 | 100 | 75 | 0 | 0 |
34 | 8 | 0 | 0 | 0 | 12.5 | 12.5 | 37.5 | 0 | 0 | 75 | 87.5 | 0 | 0 |
15A | 6 | 16.7 | 0 | 0 | 83.3 | 16.7 | 100 | 16.7 | 50 | 83.3 | 66.7 | 0 | 0 |
19B | 6 | 0 | 0 | 0 | 83.3 | 0 | 66.6 | 0 | 0 | 100 | 83.3 | 0 | 0 |
10A | 5 | 20 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | 100 | 20 | 0 | 0 |
21 | 5 | 0 | 0 | 0 | 100 | 0 | 100 | 0 | 0 | 80 | 100 | 0 | 0 |
17F | 4 | 0 | 0 | 0 | 25 | 0 | 25 | 0 | 0 | 100 | 0 | 0 | 0 |
35B | 2 | 0 | 100 | 100 | 100 | 0 | 0 | 50 | 100 | 100 | 100 | 0 | 0 |
7C | 2 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
15C | 1 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 0 |
16F | 1 | 100 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 100 | 100 | 0 | 0 |
20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 0 | 0 |
31 | 1 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 100 | 0 | 0 |
38 | 1 | 0 | 100 | 0 | 100 | 0 | 100 | 100 | 100 | 100 | 100 | 0 | 0 |
NT | 1 | 0 | 0 | 0 | 100 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 93 (100) | 3 (3.2) | 4 (4.3) | 3 (3.2) | 45 (48.4) | 7 (7.5) | 70 (74.3) | 20 (21.5) | 16 (17.2) | 85 (91.4) | 61 (65.6) | 2 (2.2) | 1 (1.1) |
Isolate ID | aroE | gdh | gki | recP | spi | xpt | ddl | ST |
---|---|---|---|---|---|---|---|---|
S119, S110, S158, H174, S258, S357 | 7 | 13 | 8 | 6 | 25 | 6 | 8 | 172 |
S114 | 7 | 13 | 8 | 6 | 25 | 246 | 8 | 6281 |
S311 | 7 | 19 | 8 | 6 | 25 | 6 | 8 | 15450 |
S1 | 12 | 5 | 4 | 10 | 15 | 155 | 9 | 15102 |
S152, S239 | 12 | 5 | 4 | 18 | 474 | 4 | 31 | 15110 |
S200, S207, S214, S238, S361 | 12 | 13 | 8 | 6 | 3 | 6 | 8 | 15111 |
S35 | 18 | 13 | 8 | 6 | 3 | 6 | 8 | 1349 |
H58, S266, S306 | 18 | 13 | 8 | 6 | 3 | 21 | 8 | 15451 |
S156 | 2 | 5 | 36 | 18 | 474 | 4 | 31 | 15447 |
S237 | 1 | 43 | 41 | 18 | 13 | 37 | 8 | 15448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, R.O.; Abdullah, M.R.; Akwetey, S.A.; Sappor, D.C.; Bolivar, J.A.; Gámez, G.; van der Linden, M.P.G.; Hammerschmidt, S. Molecular Characterization and Antibiotic Susceptibility of Non-PCV13 Pneumococcal Serotypes among Vaccinated Children in Cape Coast, Ghana. Microorganisms 2022, 10, 2054. https://doi.org/10.3390/microorganisms10102054
Mills RO, Abdullah MR, Akwetey SA, Sappor DC, Bolivar JA, Gámez G, van der Linden MPG, Hammerschmidt S. Molecular Characterization and Antibiotic Susceptibility of Non-PCV13 Pneumococcal Serotypes among Vaccinated Children in Cape Coast, Ghana. Microorganisms. 2022; 10(10):2054. https://doi.org/10.3390/microorganisms10102054
Chicago/Turabian StyleMills, Richael O., Mohammed R. Abdullah, Samuel A. Akwetey, Dorcas C. Sappor, Johan A. Bolivar, Gustavo Gámez, Mark P. G. van der Linden, and Sven Hammerschmidt. 2022. "Molecular Characterization and Antibiotic Susceptibility of Non-PCV13 Pneumococcal Serotypes among Vaccinated Children in Cape Coast, Ghana" Microorganisms 10, no. 10: 2054. https://doi.org/10.3390/microorganisms10102054
APA StyleMills, R. O., Abdullah, M. R., Akwetey, S. A., Sappor, D. C., Bolivar, J. A., Gámez, G., van der Linden, M. P. G., & Hammerschmidt, S. (2022). Molecular Characterization and Antibiotic Susceptibility of Non-PCV13 Pneumococcal Serotypes among Vaccinated Children in Cape Coast, Ghana. Microorganisms, 10(10), 2054. https://doi.org/10.3390/microorganisms10102054