Distribution and Molecular Characteristics of Vibrio Species Isolated from Aquatic Environments in China, 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Isolation and Identification of Presumptive Vibrio Species
2.3. Genomic DNA Extraction and Vibrio Isolates Confirmation
2.4. Detection of Virulence Genes
2.5. Multiple Locus Sequence Typing (MLST)
2.6. Detection of Antibiotic-Resistant Genes
3. Results
3.1. Population Structure and Regional Distribution of Vibrio Isolates
3.2. Distribution of Virulence Genes in Vibrio Isolates
3.3. MLST Analysis of Vibrio Isolates
3.4. Detection of Antibiotic-Resistant Genes in Vibrio Isolates
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parte, A.C. LPSN—List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 2018, 68, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ye, J.; Jin, D.; Ding, G.; Zhang, Z.; Mei, L.; Octavia, S.; Lan, R. Molecular analysis of non-O1/non-O139 Vibrio cholerae isolated from hospitalised patients in China. BMC Microbiol. 2013, 13, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Hao, J.; Jin, S.; Wu, K.; Wang, Y.; Ye, S.; Liu, Y.; Li, R. A Human Intestinal Infection Caused by a Novel Non-O1/O139 Vibrio cholerae Genotype and Its Dissemination along the River. Front. Public Health 2019, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Lei, T.; Jiang, F.; Zhang, J.; Zeng, H.; Wang, J.; Chen, M.; Xue, L.; Wu, S.; Ye, Q.; et al. Genetic Diversity and Population Structure of Vibrio parahaemolyticus Isolated from Clinical and Food Sources. Front. Microbiol. 2021, 12, 708795. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.R.; Fanning, G.R.; Madden, J.M.; Steigerwalt, A.G.; Bradford, H.B., Jr.; Smith, H.L., Jr.; Brenner, D.J. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J. Clin. Microbiol. 1981, 14, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Shandera, W.X.; Johnston, J.M.; Davis, B.R.; Blake, P.A. Disease from infection with Vibrio mimicus, a newly recognized Vibrio species. Ann. Intern. Med. 1983, 99, 169–171. [Google Scholar] [CrossRef]
- Zhang, X.H.; He, X.; Austin, B. Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Cui, X.; Du, X.; Kan, B.; Liang, W. The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China. Gut Pathog. 2013, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Tian, K.Y.; Liu, X.Q.; Liu, W.; Zhang, X.Y.; Liu, J.Y.; Sun, F. Characteristic and Otopathogenic Analysis of a Vibrio alginolyticus Strain Responsible for Chronic Otitis Externa in China. Front. Microbiol. 2021, 12, 750642. [Google Scholar] [CrossRef] [PubMed]
- Pariente Martín, M.; Escribano Garaizábal, E.; Liria Sánchez, P.J.; Crespo Sánchez, M.D. Vibrio metschnikovii from a human infected leg ulcer. Rev. Inst. Med. Trop. Sao Paulo 2008, 50, 311–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, P.T.H.; Linh, N.Q.; Tram, N.D.Q. The identification and determination of toxin genes of Vibrio strains causing hemorrhagic disease on red drum (Sciaenops ocellatus) using PCR. AMB Express 2021, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xiao, J.; Zhang, M.; Zhu, W.; Xia, X.; Dai, X.; Pan, Y.; Yan, S.; Wang, Y. A Vibrio owensii strain as the causative agent of AHPND in cultured shrimp, Litopenaeus vannamei. J. Invertebr. Pathol. 2018, 153, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.; Daniel, B.; Stukenberg, D.; Thuronyi, B.W.; Waldminghaus, T.; Fritz, G. Vibrio natriegens: An ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ. Microbiol. 2020, 22, 4394–4408. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, L.; Chen, H.; Liu, S.; Guo, Z.; Cheng, C.; Ma, H.; Feng, J. Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China. Sci. Rep. 2020, 10, 14329. [Google Scholar] [CrossRef] [PubMed]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef]
- Lee, L.H.; Raghunath, P. Editorial: Vibrionaceae Diversity, Multidrug Resistance and Management. Front. Microbiol. 2018, 9, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.C.; Lau, S.K.; Teng, J.L.; Tse, H.; Yuen, K.Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef] [PubMed]
- Maiden, M.C. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 2006, 60, 561–588. [Google Scholar] [CrossRef] [PubMed]
- Glaeser, S.P.; Kämpfer, P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst. Appl. Microbiol. 2015, 38, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Sawabe, T.; Kita-Tsukamoto, K.; Thompson, F.L. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J. Bacteriol. 2007, 189, 7932–7936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawabe, T.; Ogura, Y.; Matsumura, Y.; Feng, G.; Amin, A.R.; Mino, S.; Nakagawa, S.; Sawabe, T.; Kumar, R.; Fukui, Y.; et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: Proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 2013, 4, 414. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yin, H.Q.; Xia, J.; Luo, H.; Wang, M.Y. Population structure and genetic diversity of Vibrio parahaemolyticus from a coastal area of China based on a multi-locus sequence typing (MLST) scheme. Antonie Leeuwenhoek 2019, 112, 1199–1211. [Google Scholar] [CrossRef]
- Rahman, M.S.; Martino, M.E.; Cardazzo, B.; Facco, P.; Bordin, P.; Mioni, R.; Novelli, E.; Fasolato, L. Vibrio trends in the ecology of the Venice lagoon. Appl. Environ. Microbiol. 2014, 80, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Shirai, H.; Nishibuchi, M.; Ramamurthy, T.; Bhattacharya, S.K.; Pal, S.C.; Takeda, Y. Polymerase chain reaction for detection of the cholera enterotoxin operon of Vibrio cholerae. J. Clin. Microbiol. 1991, 29, 2517–2521. [Google Scholar] [CrossRef]
- Tay, C.Y.; Reeves, P.R.; Lan, R. Importation of the major pilin TcpA gene and frequent recombination drive the divergence of the Vibrio pathogenicity island in Vibrio cholerae. FEMS Microbiol. Lett. 2008, 289, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeeshan, S.; Kumar, P.; Abraham, W.P.; Thomas, S. Multiresistant Vibrio cholerae non-O1/non-O139 from waters in South India: Resistance patterns and virulence-associated gene profiles. J. Basic Microbiol. 2009, 49, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Rivera, I.N.; Chun, J.; Huq, A.; Sack, R.B.; Colwell, R.R. Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl. Environ. Microbiol. 2001, 67, 2421–2429. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.H.; Ng, T.K.; Yuen, K.Y.; Yam, W.C. Detection of RTX toxin gene in Vibrio cholerae by PCR. J. Clin. Microbiol. 2001, 39, 2594–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Ghosh, K.; Raychoudhuri, A.; Chowdhury, G.; Bhattacharya, M.K.; Mukhopadhyay, A.K.; Ramamurthy, T.; Bhattacharya, S.K.; Klose, K.E.; Nandy, R.K. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J. Clin. Microbiol. 2009, 47, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, S.P.; Asakura, M.; Chowdhury, N.; Neogi, S.B.; Hinenoya, A.; Golbar, H.M.; Yamate, J.; Arakawa, E.; Tada, T.; Ramamurthy, T.; et al. Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect. Immun. 2013, 81, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Bhanumathi, R.; Sabeena, F.; Isac, S.R.; Shukla, B.N.; Singh, D.V. Molecular characterization of Vibrio cholerae O139 bengal isolated from water and the aquatic plant Eichhornia crassipes in the River Ganga, Varanasi, India. Appl. Environ. Microbiol. 2003, 69, 2389–2394. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Miyoshi, S.I.; Bi, K.; Nakamura, M.; Hiura, M.; Tomochika, K.; Shinoda, S. Presence of Hemolysin Genes (vmh, tdh and hlx) in Isolates of Vibrio mimicus Determined by Polymerase Chain Reaction. J. Health Sci. 2000, 46, 63–65. [Google Scholar]
- Vicente, A.C.; Coelho, A.M.; Salles, C.A. Detection of Vibrio cholerae and V. mimicus heat-stable toxin gene sequence by PCR. J. Med. Microbiol. 1997, 46, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Bej, A.K.; Patterson, D.P.; Brasher, C.W.; Vickery, M.C.; Jones, D.D.; Kaysner, C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods 1999, 36, 215–225. [Google Scholar] [CrossRef]
- Ruwandeepika, H.A.; Defoirdt, T.; Bhowmick, P.P.; Shekar, M.; Bossier, P.; Karunasagar, I. Presence of typical and atypical virulence genes in vibrio isolates belonging to the Harveyi clade. J. Appl. Microbiol. 2010, 109, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Gebreyes, W.A.; Altier, C. Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica Serovar typhimurium isolates from swine. J. Clin. Microbiol. 2002, 40, 2813–2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, L.; Aarestrup, F.M.; Olsen, J.E. Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella typhimurium. Vet. Microbiol. 2000, 75, 73–82. [Google Scholar] [CrossRef]
- Maynard, C.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J. Clin. Microbiol. 2004, 42, 5444–5452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, V.; Hall, R.M. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 2667–2671. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef]
- Iwanaga, M.; Toma, C.; Miyazato, T.; Insisiengmay, S.; Nakasone, N.; Ehara, M. Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob. Agents Chemother. 2004, 48, 2364–2369. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.; Ko, W.C.; Tsai, S.H.; Yan, J.J. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob. Agents Chemother. 2007, 51, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Nascimento, M.; Sousa, A.; Ramirez, M.; Francisco, A.P.; Carriço, J.A.; Vaz, C. PHYLOViZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017, 33, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, A.P.; Bugalho, M.; Ramirez, M.; Carriço, J.A. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, H.; Liang, J.; Qian, H.; Ye, J.; Chen, L.; Yang, X.; Chen, Z.; Wang, F.; Octavia, S.; et al. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. Microb. Ecol. 2021, 82, 319–333. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Wang, X.; Lin, H.; Liu, J.; Zhou, S.; Sun, H.; Zhang, X.H. Spatiotemporal Dynamics of Free-Living and Particle-Associated Vibrio Communities in the Northern Chinese Marginal Seas. Appl. Environ. Microbiol. 2019, 85, e00217-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gxalo, O.; Digban, T.O.; Igere, B.E.; Olapade, O.A.; Okoh, A.I.; Nwodo, U.U. Virulence and Antibiotic Resistance Characteristics of Vibrio Isolates from Rustic Environmental Freshwaters. Front. Cell. Infect. Microbiol. 2021, 11, 732001. [Google Scholar] [CrossRef] [PubMed]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 2014, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Gong, L.; Yang, S.; Gao, Y.; Ma, X.; Xu, L.; Chen, H.; Luo, Z. Spatiotemporal Dynamics of Vibrio Communities and Abundance in Dongshan Bay, South of China. Front. Microbiol. 2020, 11, 575287. [Google Scholar] [CrossRef] [PubMed]
- Sharifnia, A.; Bakhshi, B.; Pourshafie, M.R. wbeT sequence typing and IS1004 profiling of Vibrio cholerae isolates. Lett. Appl. Microbiol. 2012, 54, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, R.S.; Mandal, J. Azithromycin can induce SOS response and horizontal gene transfer of SXT element in Vibrio cholerae. Mol. Biol. Rep. 2022, 49, 4737–4748. [Google Scholar] [CrossRef]
- Li, F.; Du, P.; Li, B.; Ke, C.; Chen, A.; Chen, J.; Zhou, H.; Li, J.; Morris, J.G., Jr.; Kan, B.; et al. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl. Environ. Microbiol. 2014, 80, 4987–4992. [Google Scholar] [CrossRef] [PubMed]
- Shin, O.S.; Tam, V.C.; Suzuki, M.; Ritchie, J.M.; Bronson, R.T.; Waldor, M.K.; Mekalanos, J.J. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2011, 2, e00106–e00111. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, S.; Nakagawa, T.; Shi, L.; Bi, K.; Kanoh, Y.; Tomochika, K.; Miyoshi, S.; Shimada, T. Distribution of virulence-associated genes in Vibrio mimicus isolates from clinical and environmental origins. Microbiol. Immunol. 2004, 48, 547–551. [Google Scholar] [CrossRef]
- Honda, T.; Iida, T. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev. Res. Med. Microbiol. 1993, 4, 106–113. [Google Scholar] [CrossRef]
- Henke, J.M.; Bassler, B.L. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 2004, 186, 6902–6914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, P.F.; Hedreyda, C.T. Amplification and sequence analysis of the full length toxR gene in Vibrio harveyi. J. Gen. Appl. Microbiol. 2006, 52, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beshiru, A.; Okareh, O.T.; Okoh, A.I.; Igbinosa, E.O. Detection of antibiotic resistance and virulence genes of Vibrio strains isolated from ready-to-eat shrimps in Delta and Edo States, Nigeria. J. Appl. Microbiol. 2020, 129, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Elmahdi, S.; DaSilva, L.V.; Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 2016, 57, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, H.; Zhang, H.; Liu, T.; Hao, W.; Yuan, Q. MLST/MVLST Analysis and Antibiotic Resistance of Vibrio cholerae in Shandong Province of China. Iran. J. Public Health 2021, 50, 1805–1815. [Google Scholar] [CrossRef]
- Pérez-Duque, A.; Gonzalez-Muñoz, A.; Arboleda-Valencia, J.; Vivas-Aguas, L.J.; Córdoba-Meza, T.; Rodriguez-Rey, G.T.; Díaz-Guevara, P.; Martinez-Urtaza, J.; Wiesner-Reyes, M. Comparative Genomics of Clinical and Environmental Isolates of Vibrio spp. of Colombia: Implications of Traits Associated with Virulence and Resistance. Pathogens 2021, 10, 1605. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Onohuean, H.; Agwu, E.; Nwodo, U.U. Systematic review and meta-analysis of environmental Vibrio species—Antibiotic resistance. Heliyon 2022, 8, e08845. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence (5′-3′) | Ta a | Amplicon Size (bp) | References |
---|---|---|---|---|
ctxAB | F: CTCAGACGGGATTTGTTAGGCACG | 55 | 302 | [30] |
R: TCTATCTCTGTAGCCCCTATTACG | ||||
tcpA (1) b | F: GTGACTGAAAGTCATCTCTTC | 55 | 1248 | [31] |
R: AATCCGACACCTTGTTGGTA | ||||
tcpA (2) b | F: ATATGCAATTATTAAAACAGC | 55 | 1052 | [31] |
R: TTATTATTACCCGTTGTCGG | ||||
mshA | F: CGCACAATGAGGTTCGCCAAG | 60 | 512 | [32] |
R: CCGAAAATTGACCGCCATTATC | ||||
hlyAc | F: GGCAAACAGCGAAACAAATACC | 60 | 481 | [33] |
R: CTCAGCGGGCTAATACGGTTTA | ||||
rtxC | F: CGACGAAGATCATTGACGAC | 55 | 263 | [34] |
R: CATCGTCGTTATGTGGTTGC | ||||
rtxA | F: CTGAATATGAGTGGGTGACTTACG | 55 | 417 | [34] |
R: GTGTATTGTTCGATATCCGCTACG | ||||
IS1004 | F: ATTGTCATCCCTAAACCACC | 60 | 603 | [35] |
R: AGGCGGTTTTAATATAAGCC | ||||
chxA | F: TGTGTGATGATGCTTCTGG | 52 | 2000 | [36] |
R: TTATTTCAGTTCATCTTTTCGC | ||||
SXT | F: TCGGGTATCGCCCAAGGGCA | 60 | 946 | [37] |
R: GCGAAGATCATGCATAGACC | ||||
T3SS (vcsV2) | F: ATGCAGATCTTTTGGCTCACTTGATGGG | 55 | 742 | [35] |
R: ATGCGTCGACGCCACATCATTGCTTGCT | ||||
nag-st | F: TATTATTTTCTTCAATCGCATTTAGC | 60 | 206 | [32] |
R: ATTTAAACATCCAAAGCAAGCTGG | ||||
vmh | F: GGTAGCCATCAGTCTTATCACG | 55 | 289 | [38] |
R: ATCGTGTCCCAATACTTCACCG | ||||
tdh (V. mimicus) | F: GGTACTAAATGGCTGACATC | 55 | 251 | [38] |
R: CCACTACCACTCTCATATGC | ||||
hlx | F: CTGCCCATTAGAAACACCCT | 55 | 382 | [38] |
R: GTTGCTCATTCTCTGTCACC | ||||
st | F: GAGAAACCTATTCATTGCA | 50 | 216 | [39] |
R: GCAAGCTGGATTGCAAC | ||||
tl | F: AAAGCGGATTATGCAGAAGCACTG | 58 | 450 | [40] |
R: GCTACTTTCTAGCATTTTCTCTGC | ||||
tdh (V. parahaemolyticus) | F: GTAAAGGTCTCTGACTTTTGGAC | 58 | 269 | [40] |
R: TGGAATAGAACCTTCATCTTCACC | ||||
trh | F: TTGGCTTCGATATTTTCAGTATCT | 58 | 500 | [40] |
R: CATAACAAACATATGCCCATTTCCG | ||||
luxR | F: ATGGACTCAATTGCAAAGAG | 50 | 618 | [41] |
R: TTAGTGATGTTCACGGTTGT | ||||
toxRVh | F: CGACAACCAAAATACGGAA | 50 | 131 | [41] |
R: AGAGCAATTTGCTGAAGCTA | ||||
chiA | F: GGAAGATGGCGTGATTGACT | 50 | 232 | [41] |
R: GGCATCAATTTCCCAAGAGA | ||||
serine protease | F: TGCACGACCAGTTGCTTTAG | 50 | 232 | [41] |
R: AAGTGGTCGTCAGCAAATCC | ||||
vhh | F: TTCACGCTTGATGGCTACTG | 50 | 234 | [41] |
R: GTCACCCAATGCTACGACCT | ||||
vfh | F: GCGCGTCAGTGGTGGTGAAG | 61 | 800 | [9] |
R: TCGGTCGAACCGCTCTCGCTT | ||||
hupO | F: ATTACGCACAACGAGTCGAAC | 56 | 600 | [9] |
R: ATTGAGATGGTAAACAGCGCC | ||||
vfpA | F: TACAACGTCAAGTTAAAGGC | 55 | 1790 | [9] |
R: GTAGGCGCTGTAGCCTTTCA | ||||
DNA gyrase, β subunit (gyrB) | F: GAAGGTGGTATTCAAGCGTT | 55 | 570 | [26] |
R: CGGTCATGATGATGATGTTGT | ||||
Uridylate kinase (pyrH) | F: CCCTAAACCAGCGTATCAACGTATTC | 55 | 501 | [26] |
R: CGGATWGGCATTTTGTGGTCACGWGC | ||||
Recombinase A (recA) | F: TGCGCTAGGTCAAATTGAAA | 55 | 462 | [26] |
R: GTTTCWGGGTTACCRAACATYACACC | ||||
ATP synthase, α subunit (atpA) | F: ATCGGTGACCGTCARACWGGTAAAAC | 60 | 489 | [26] |
R: ATACCTGGGTCAACCGCTGG | ||||
strA | F: CTTGGTGATAACGGCAATTC | 53 | 548 | [42] |
R: CCAATCGCAGATAGAAGGC | ||||
strB | F: ATCGTCAAGGGATTGAAACC | 53 | 509 | [42] |
R: GGATCGTAGAACATATTGGC | ||||
aadA | F: GTGGATGGCGGCCTGAAGCC | 68 | 525 | [43] |
R: AATGCCCAGTCGGCAGCG | ||||
aac(3)-IIa (aacC2) | F: CGGAAGGCAATAACGGAG | 50 | 740 | [44] |
R: TCGAACAGGTAGCACTGAG | ||||
aph(3’)-Ia (aphA1) | F: ATGGGCTCGCGATAATGTC | 50 | 600 | [44] |
R: CTCACCGAGGCAGTTCCAT | ||||
aph(3’)-IIa (aphA2) | F: GAACAAGATGGATTGCACGC | 50 | 680 | [44] |
R: GCTCTTCAGCAATATCACGG | ||||
cmlA1 | F: CACCAATCATGACCAAG | 60 | 115 | [45] |
R: GGCATCACTCGGCATGGACATG | ||||
catI | F: AGTTGCTCAATGTACCTATAACC | 50 | 547 | [44] |
R: TTGTAATTCATTAAGCATTCTGCC | ||||
catII | F: ACACTTTGCCCTTTATCGTC | 50 | 543 | [44] |
R: TGAAAGCCATCACATACTGC | ||||
floR | F: CGCCGTCATTCCTCACCTTC | 50 | 215 | [44] |
R: GATCACGGGCCACGCTGTGTC | ||||
blaTEM | F: TTTCGTGTCGCCCTTATTCC | 60 | 690 | [46] |
R: CCGGCTCCAGATTTATCAGC | ||||
sulI | F: TTCGGCATTCTGAATCTCAC | 50 | 822 | [44] |
R: ATGATCTAACCCTCGGTCTC | ||||
dfrA1 | F: CGAAGAATGGAGTTATCGGG | 60.5 | 372 | [47] |
R: TGCTGGGGATTTCAGGAAAG | ||||
qnrA | F: TTCAGCAAGAGGATTTCTCA | 55 | 628 | [48] |
R: GGCAGCACTATTACTCCCAA | ||||
tetA | F: GCTACATCCTGCTTGCCTTC | 55 | 210 | [49] |
R: CATAGATCGCCGTGAAGAGG |
Strain No. | gyrB | pyrH | recA | atpA | ST |
---|---|---|---|---|---|
H10 | 22 | 20 | 22 | 16 | 24 |
B2 | 224 | 158 | 216 | 159 | 472 |
B3 | 223 | 159 | 217 | 160 | 473 |
B22 | 223 | 159 | 217 | 160 | 473 |
B12 | 225 | 160 | 218 | 161 | 474 |
M1 | 226 | 161 | 219 | 90 | 475 |
M6 | 227 | 162 | 220 | 90 | 476 |
M14 | 229 | 55 | 221 | 60 | 477 |
H3 | 228 | 36 | 52 | 19 | 478 |
W15 | 230 | 163 | 44 | 162 | 479 |
Y3 | 231 | 40 | 222 | 19 | 480 |
M21 | 232 | 164 | 223 | 163 | 481 |
H2 | 233 | 20 | 224 | 16 | 482 |
W6 | 112 | 17 | 225 | 129 | 483 |
Y1 | 74 | 108 | 107 | 16 | 484 |
H8 | 234 | 165 | 226 | 164 | 485 |
W7 | 235 | 166 | 227 | 165 | 486 |
Q3 | 236 | 167 | 228 | 166 | 487 |
W31 | 237 | 168 | 229 | 166 | 488 |
Q1 | 238 | 169 | 230 | 167 | 489 |
W5 | 240 | 170 | 231 | 169 | 490 |
B1 | 239 | 171 | 232 | 168 | 491 |
W1 | 241 | 172 | 233 | 170 | 492 |
H14 | 242 | 19 | 234 | 17 | 493 |
W20 | 243 | 19 | 138 | 17 | 494 |
Q12 | 244 | 173 | 235 | 171 | 495 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Huang, Z.; Yu, K.; Wang, M.; Gao, H.; Bai, X.; Jiang, M.; Wang, D. Distribution and Molecular Characteristics of Vibrio Species Isolated from Aquatic Environments in China, 2020. Microorganisms 2022, 10, 2007. https://doi.org/10.3390/microorganisms10102007
Xiao Y, Huang Z, Yu K, Wang M, Gao H, Bai X, Jiang M, Wang D. Distribution and Molecular Characteristics of Vibrio Species Isolated from Aquatic Environments in China, 2020. Microorganisms. 2022; 10(10):2007. https://doi.org/10.3390/microorganisms10102007
Chicago/Turabian StyleXiao, Yue, Zhenzhou Huang, Keyi Yu, Maoshu Wang, He Gao, Xuemei Bai, Mengnan Jiang, and Duochun Wang. 2022. "Distribution and Molecular Characteristics of Vibrio Species Isolated from Aquatic Environments in China, 2020" Microorganisms 10, no. 10: 2007. https://doi.org/10.3390/microorganisms10102007
APA StyleXiao, Y., Huang, Z., Yu, K., Wang, M., Gao, H., Bai, X., Jiang, M., & Wang, D. (2022). Distribution and Molecular Characteristics of Vibrio Species Isolated from Aquatic Environments in China, 2020. Microorganisms, 10(10), 2007. https://doi.org/10.3390/microorganisms10102007