Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Green Turtle Sampling
2.3. Macrophyte Sampling
2.4. DNA Extraction and Analysis of Metabarcoding Data
3. Results
4. Discussion
4.1. Turtle GI Microbial Baselines
4.2. Microbial Contribution of Food Items to Green Turtle GI Microbiome
4.3. Limitations and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stecher, B.; Hardt, W.-D. The role of microbiota in infectious disease. Trends Microbiol. 2008, 16, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Bjorndal, K.A.; Suganuma, H.; Bolten, A.B. Digestive fermentation in green turtles, Chelonia mydas, feeding on algae. Bull. Mar. Sci. 1991, 48, 166–171. [Google Scholar]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Gibson, K.M.; Nguyen, B.N.; Neumann, L.M.; Miller, M.; Buss, P.; Daniels, S.; Ahn, M.J.; Crandall, K.A.; Pukazhenthi, B. Gut microbiome differences between wild and captive black rhinoceros—Implications for rhino health. Sci. Rep. 2019, 9, 7570. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Yang, Z.; Zhang, Z.; Hu, T.; Chen, H.; Huang, F.; Gu, X.; Yang, X.; Lu, G.; Zhu, L. Are the gut microbial systems of giant pandas unstable? Heliyon 2019, 5, e02480. [Google Scholar] [CrossRef] [Green Version]
- Ahasan, S.; Waltzek, T.B.; Huerlimann, R.; Ariel, E. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiol. Ecol. 2017, 93, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, J.; Paladino, F.V.; Lamont, M.M.; Witherington, B.E.; Bates, S.T.; Soule, T. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats. PLoS ONE 2017, 12, e0177642. [Google Scholar] [CrossRef] [Green Version]
- Ahasan, S.; Waltzek, T.; Huerlimann, R.; Ariel, E. Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiol. Res. 2018, 207, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.; Guivernau, M.; Prenafeta-Boldú, F.X.; Cardona, L. Fast acquisition of a polysaccharide fermenting gut microbiome by juvenile green turtles Chelonia mydas after settlement in coastal habitats. Microbiome 2018, 6, 69. [Google Scholar] [CrossRef]
- Bjorndal, K.A. Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar. Biol. Res. 1980, 56, 147–154. [Google Scholar] [CrossRef]
- Esteban, N.; Mortimer, J.A.; Stokes, H.J.; Laloë, J.-O.; Unsworth, R.K.F.; Hays, G.C. A global review of green turtle diet: Sea surface temperature as a potential driver of omnivory levels. Mar. Biol. 2020, 167, 183. [Google Scholar] [CrossRef]
- Bjorndal, K.A. Cellulose digestion and volatile fatty acid production in the green turtle, Chelonia mydas. Comp. Biochem. Physiol. 1979, 63A, 127–133. [Google Scholar] [CrossRef]
- Jones, J.; Dibattista, J.D.; Stat, M.; Bunce, M.; Boyce, M.; Fairclough, D.; Travers, M.J.; Huggett, M.J. The Microbiome of the Gastrointestinal Tract of a Range-Shifting Marine Herbivorous Fish. Front. Microbiol. 2018, 9, 2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenchel, T.M.; McRoy, C.P.; Ogden, J.C.; Parker, P.; Rainey, W.E. Symbiotic Cellulose Degradation in Green Turtles, Chelonia mydas L. Appl. Environ. Microbiol. 1979, 37, 348–350. [Google Scholar] [CrossRef] [Green Version]
- Bjorndal, K.A. Nutritional ecology of sea turtles. Copeia 1985, 3, 736–751. [Google Scholar] [CrossRef]
- Uffen, R.L. Xylan degradation: A glimpse at microbial diversity. J. Ind. Microbiol. Biotechnol. 1997, 19, 1–6. [Google Scholar] [CrossRef]
- Uz, I.; Ogram, A.V. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol. Ecol. 2006, 57, 396–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermid, K.J.; Kittle, I.R.P.; Veillet, A.; Plouviez, S.; Muehlstein, L.; Balazs, G.H. Identification of Gastrointestinal Microbiota in Hawaiian Green Turtles (Chelonia mydas). Evol. Bioinform. 2020, 16, 1176934320914603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, P.Y.; Wheeler, E.; Cann, I.K.; Mackie, R.I. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J. 2011, 5, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Bjursell, M.K.; Himrod, J.; Deng, S.; Carmichael, L.K.; Chiang, H.C.; Hooper, L.V.; Gordon, J.I. A Genomic View of the Human- Bacteroides thetaiotaomicron Symbiosis. Science 2003, 299, 2074–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.G.; Martins, A.S.; Farias, J.D.N.; Horta, P.A.; Pinheiro, H.T.; Torezani, E.; Baptistotte, C.; Seminoff, J.A.; Balazs, G.H.; Work, T.M. Coastal habitat degradation and green sea turtle diets in Southeastern Brazil. Mar. Pollut. Bull. 2011, 62, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, R.; Kim, B.-H.; Cho, D.-H.; Oh, H.-M.; Kim, H.-S. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Lachnit, T.; Meske, D.; Wahl, M.; Harder, T.; Schmitz, R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 2010, 13, 655–665. [Google Scholar] [CrossRef]
- Goecke, F.; Labes, A.; Wiese, J.; Imhoff, J.F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 2010, 409, 267–299. [Google Scholar] [CrossRef]
- Burke, C.; Steinberg, P.; Rusch, D.; Kjelleberg, S.; Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. USA 2011, 108, 14288–14293. [Google Scholar] [CrossRef] [Green Version]
- Popper, Z.A.; Michel, G.; Hervé, C.; Domozych, D.S.; Willats, W.G.; Tuohy, M.G.; Kloareg, B.; Stengel, D.B. Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annu. Rev. Plant Biol. 2011, 62, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Hehemann, J.-H.; Correc, G.; Thomas, F.; Bernard, T.; Barbeyron, T.; Jam, M.; Helbert, W.; Michel, G.; Czjzek, M. Biochemical and Structural Characterization of the Complex Agarolytic Enzyme System from the Marine Bacterium Zobellia galactanivorans. J. Biol. Chem. 2012, 287, 30571–30584. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Reddy, C. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 2014, 88, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Burke, C.; Thomas, T.; Lewis, M.; Steinberg, P.; Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 2010, 5, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Hollants, J.; Leliaert, F.; De Clerck, O.; Willems, A. What we can learn from sushi: A review on seaweed-bacterial associations. FEMS Microbiol. Ecol. 2012, 83, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, C.; Patrício, A.R.; Ferreira Airaud, M.B.; Sampaio, M.; Catry, P. Tartarugas Marinhas. In Parque Nacional Marinho João Vieira e Poilão: Biodiversidade e Conservação; Catry, P., Regalla, A., Eds.; IBAP—Instituto da Biodiversidade e das Áreas Protegidas: Bissau, Guinea-Bissau, 2018. [Google Scholar]
- Monteiro, J.; Duarte, M.; Amadou, K.; Barbosa, C.; El Bar, N.; Madeira, F.M.; Regalla, A.; Duarte, A.; Tavares, L.; Patrício, A.R. Fibropapillomatosis and the Chelonid Alphaherpesvirus 5 in Green Turtles from West Africa. EcoHealth 2021, 18, 229–240. [Google Scholar] [CrossRef]
- Díaz-Abad, L.; Bacco-Mannina, N.; Madeira, F.M.; Neiva, J.; Aires, T.; Serrao, E.A.; Regalla, A.; Patrício, A.R.; Frade, P.R. eDNA metabarcoding for diet analyses of green sea turtles (Chelonia mydas). Mar. Biol. 2021, 169, 18. [Google Scholar] [CrossRef]
- Madeira, F.M.; Rebelo, R.; Catry, P.; Neiva, J.; Barbosa, C.; Regalla, A.; Patrício, A.R. Fine-scale foraging segregation in a green turtle (Chelonia mydas) feeding ground in the Bijagós archipelago, Guinea Bissau. Front. Mar. Sci. 2022, 9, 984219. [Google Scholar] [CrossRef]
- De Oliveira, L.S.; Gregoracci, G.B.; Silva, G.G.Z.; Salgado, L.T.; Filho, G.A.; Alves-Ferreira, M.; Pereira, R.C.; Thompson, F.L. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genom. 2012, 13, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, J.; Williamson, C.; Barker, G.L.; Walker, R.H.; Briscoe, A.; Yallop, M. Characterising the microbiome of Corallina officinalis, a dominant calcified intertidal red alga. FEMS Microbiol. Ecol. 2016, 92, fiw110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, S.F.; Vasselon, V.; Ballorain, K.; Carpentier, A.; Wetzel, C.E.; Ector, L.; Bouchez, A.; Rimet, F. DNA metabarcoding and microscopic analyses of sea turtles biofilms: Complementary to understand turtle behavior. PLoS ONE 2018, 13, e0195770. [Google Scholar] [CrossRef]
- Martin, J.; Gambaiani, D.; Sabatte, M.-A.; Pelorce, J.; Valentini, A.; Dejean, T.; Darmon, G.; Miaud, C. A comparison of visual observation and DNA metabarcoding to assess the diet of juvenile sea turtle. Mar. Freshw. Res. 2021, 73, 552–560. [Google Scholar] [CrossRef]
- Sarkis, C.; Hoenig, B.; Seney, E.; Gaspar, S.; Forsman, A. Sea snacks from DNA tracks: Using DNA metabarcoding to char-acterize the diet of green turtles (Chelonia mydas). Integr. Comp. Biol. 2022, 62, 223–236. [Google Scholar] [CrossRef]
- Catry, P.; Barbosa, C.; Paris, B.; Indjai, B.; Almeida, A.; Limoges, B.; Silva, C.; Pereira, H. Status, Ecology, and Conservation of Sea Turtles in Guinea-Bissau. Chelonian Conserv. Biol. 2009, 8, 150–160. [Google Scholar] [CrossRef]
- Patrício, A.R.; Varela, M.R.; Barbosa, C.; Broderick, A.C.; Catry, P.; Hawkes, L.A.; Regalla, A.; Godley, B.J. Climate change resil-ience of a globally important sea turtle nesting population. Glob. Chang. Biol. 2019, 25, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.U.; Daniel, R.S. Observations of Behavioral Development in the Loggerhead Turtle (Caretta caretta). Science 1946, 104, 154–156. [Google Scholar] [CrossRef]
- Hughes, G.R. The Sea Turtles of South-East Africa. II. The Biology of the Tongaland loggerhead Turtle Caretta caretta L. with Comments on the Leatherback Turtle Dermochelys coriacea L. and the Green turtle Chelonia mydas L. in the Study Region; Investigational Report No. 36; The Oceanographic Research Institute: Durban, Republic of South Africa, 1974; p. 96. [Google Scholar]
- Vieira, C.; Engelen, A.; Guentas, L.; Aires, T.; Houlbreque, F.; Gaubert, J.; Serrao, E.; De Clerck, O.; Payri, C. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata. Front. Microbiol. 2016, 7, 316. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.2-0. 2014. Available online: http://CRAN.Rproject.org/package=vegan (accessed on 1 February 2021).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloway-Adkins, K.G.; Hanisak, M.D. Macroalgal foraging preferences of juvenile green turtles (Chelonia mydas) in a warm temperate/subtropical transition zone. Mar. Biol. 2017, 164, 161. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 35. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Albhaisi, S.; Shamsaddini, A.; Fagan, A.; McGeorge, S.; Sikaroodi, M.; Gavis, E.; Patel, S.; Davis, B.C.; Acharya, C.; Sterling, R.K.; et al. Gut Microbial Signature of Hepatocellular Cancer in Men with Cirrhosis. Liver Transplant. 2021, 27, 629–640. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Pootakham, W.; Mhuantong, W.; Yoocha, T.; Putchim, L.; Sonthirod, C.; Naktang, C.; Thongtham, N.; Tangphatsornruang, S. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 2017, 7, 2774. [Google Scholar] [CrossRef] [Green Version]
- Zanden, H.B.V.; Arthur, K.E.; Bolten, A.B.; Popp, B.N.; Lagueux, C.J.; Harrison, E.; Campbell, C.L.; Bjorndal, K.A. Trophic ecology of a green turtle breeding population. Mar. Ecol. Prog. Ser. 2013, 476, 237–249. [Google Scholar] [CrossRef]
- Seminoff, J.A.; Komoroske, L.M.; Amorocho, D.; Arauz, R.; Chacón-Chaverrí, D.; de Paz, N.; Dutton, P.H.; Donoso, M.; Heidemeyer, M.; Hoeffer, G.; et al. Large-scale patterns of green turtle trophic ecology in the eastern Pacific Ocean. Ecosphere 2021, 12, e03479. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Picard, J.; Elliott, L.; Kinobe, R.; Owens, L.; Ariel, E. Evidence of antibiotic resistance in Enterobacteriales isolated from green sea turtles, Chelonia mydas on the Great Barrier Reef. Mar. Pollut. Bull. 2017, 120, 18–27. [Google Scholar] [CrossRef]
- Bloodgood, J.C.G.; Hernandez, S.; Isaiah, A.; Suchodolski, J.S.; Hoopes, L.A.; Thompson, P.M.; Waltzek, T.B.; Norton, T.M. The effect of diet on the gastrointestinal microbiome of juvenile rehabilitating green turtles (Chelonia mydas). PLoS ONE 2020, 15, e0227060. [Google Scholar] [CrossRef] [Green Version]
- Ahasan, M.S.; Waltzek, T.B.; Owens, L.; Ariel, E. Characterisation and comparison of the mucosa-associated bacterial communities across the gastrointestinal tract of stranded green turtles, Chelonia mydas. AIMS Microbiol. 2020, 6, 361–378. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Li, C.-M.; Dunlap, C.A.; Rooney, A.; Du, Z.-J. Marinicella sediminis sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2018, 68, 2335–2339. [Google Scholar] [CrossRef]
- Koblížek, M.; Béjà, O.; Bidigare, R.R.; Christensen, S.; Benitez-Nelson, B.; Vetriani, C.; Kolber, M.K.; Falkowski, P.G.; Kolber, Z.S. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 2003, 180, 327–338. [Google Scholar] [CrossRef]
- Khan, S.; Fukunaga, Y.; Nakagawa, Y.; Harayama, S. Emended descriptions of the genus Lewinella and of Lewinella cohaerens, Lewinella nigricans and Lewinella persica, and description of Lewinella lutea sp. nov. and Lewinella marina sp. nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Venter, J.C.; Remington, K.; Heidelberg, J.F.; Halpern, A.L.; Rusch, D.; Eisen, J.A.; Wu, D.; Paulsen, I.T.; Nelson, K.E.; Nelson, W.; et al. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 2004, 304, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Rusch, D.B.; Halpern, A.L.; Sutton, G.; Heidelberg, K.; Williamson, S.; Yooseph, S.; Wu, D.; Eisen, J.A.; Hoffman, J.M.; Remington, K.; et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 2007, 5, e77. [Google Scholar] [CrossRef]
- Giovannoni, S.J.; Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 2005, 437, 343–348. [Google Scholar] [CrossRef]
- Scheelings, T.; Moore, R.; Van, T.; Klaassen, M.; Reina, R. The gut bacterial microbiota of sea turtles differs between geographically distinct populations. Endanger. Species Res. 2020, 42, 95–108. [Google Scholar] [CrossRef]
- Keene, E.; Soule, T.; Paladino, F. Microbial Isolations from Olive Ridley (Lepidochelys olivacea) and East Pacific Green (Chelonia mydas agassizii) Sea Turtle Nests in Pacific Costa Rica, and Testing of Cloacal Fluid Antimicrobial Properties. Chelonian Conserv. Biol. 2014, 13, 49–55. [Google Scholar] [CrossRef]
- Sarmiento-Ramírez, J.M.; Van Der Voort, M.; Raaijmakers, J.; Diéguez-Uribeondo, J. Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme. PLoS ONE 2014, 9, e95206. [Google Scholar] [CrossRef]
- Arizza, V.; Vecchioni, L.; Caracappa, S.; Sciurba, G.; Berlinghieri, F.; Gentile, A.; Persichetti, M.F.; Arculeo, M.; Alduina, R. New insights into the gut microbiome in loggerhead sea turtles Caretta caretta stranded on the Mediterranean coast. PLoS ONE 2019, 14, e0220329. [Google Scholar] [CrossRef] [Green Version]
- Baumbach, D.S.; Zhang, R.; Hayes, C.T.; Wright, M.K.; Dunbar, S.G. Strategic foraging: Understanding hawksbill (Eretmo-chelys imbricata) prey item energy values and distribution within a marine protected area. Mar. Ecol. 2022, 43, e12703. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Abdelrhman, K.F.A.; Bacci, G.; Mancusi, C.; Mengoni, A.; Serena, F.; Ugolini, A. A First Insight into the Gut Microbiota of the Sea Turtle Caretta caretta. Front. Microbiol. 2016, 7, 1060. [Google Scholar] [CrossRef]
- Power, S.E.; O’Toole, P.; Stanton, C.; Ross, R.; Fitzgerald, G.F. Intestinal microbiota, diet and health. Br. J. Nutr. 2013, 111, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Amberg, J.; Chapman, D.; Gaikowski, M.; Liu, W. Fish gut microbiota analysis differentiates physiology and behav-iour of invasive Asian carp and indigenous American fish. ISME J. 2014, 8, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Lage, O.M.; Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. 2011, 78, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Huggett, M.J.; Williamson, J.E.; de Nys, R.; Kjelleberg, S.; Steinberg, P.D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 2006, 149, 604–619. [Google Scholar] [CrossRef]
- Colston, T.J. Gut microbiome transmission in lizards. Mol. Ecol. 2017, 26, 972–974. [Google Scholar] [CrossRef] [Green Version]
- Carranco, A.S.; Romo, D.; Torres, M.D.L.; Wilhelm, K.; Sommer, S.; Gillingham, M.A.F. Egg microbiota is the starting point of hatchling gut microbiota in the endangered yellow-spotted Amazon river turtle. Mol. Ecol. 2022, 31, 3917–3933. [Google Scholar] [CrossRef]
- Polat, S.; Ozogul, Y. Biochemical composition of some red and brown macro algae from the Northeastern Mediterranean Sea. Int. J. Food Sci. Nutr. 2008, 59, 566–572. [Google Scholar] [CrossRef]
- Phylum Rhodophyta—The Red Algae. (17 June 2020). Retrieved 15 June 2021. Available online: https://bio.libretexts.org/@go/page/29592 (accessed on 15 June 2021).
- Buchan, A.; Collier, L.S.; Neidle, E.; Moran, M.A. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl. Environ. Microbiol. 2000, 66, 4662–4672. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Lovell, C.R. Bacterial Primary Colonization and Early Succession on Surfaces in Marine Waters as Determined by Amplified rRNA Gene Restriction Analysis and Sequence Analysis of 16S rRNA Genes. Appl. Environ. Microbiol. 2000, 66, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Gomez, B.F.; Richter, M.; Schüler, M.; Pinhassi, J.; Acinas, S.; Gonzalez, J.; Pedrós-Alió, C. Ecology of marine Bacteroidetes: A comparative genomics approach. ISME J. 2013, 7, 1026–1037. [Google Scholar] [CrossRef] [Green Version]
- Bernardet, J.F.; Nakagawa, Y.; Holmes, B. Proposed minimal standards for describing new taxa of the family Flavobacte-riaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 2002, 52, 1049–1070. [Google Scholar]
- Bennke, C.M.; Krüger, K.; Kappelmann, L.; Huang, S.; Gobet, A.; Schüler, M.; Barbe, V.; Fuchs, B.M.; Michel, G.; Teeling, H.; et al. Polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ. Microbiol. 2016, 18, 4456–4470. [Google Scholar] [CrossRef]
- Gavriilidou, A.; Gutleben, J.; Versluis, D.; Forgiarini, F.; Van Passel, M.W.J.; Ingham, C.J.; Smidt, H.; Sipkema, D. Comparative genomic analysis of Flavobacteriaceae: Insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genom. 2020, 21, 569. [Google Scholar] [CrossRef]
- Nelson, T.M.; Rogers, T.; Brown, M.V. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats. PLoS ONE 2013, 8, e83655. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Abad, L.; Bacco-Mannina, N.; Miguel Madeira, F.; Serrao, E.A.; Regalla, A.; Patrício, A.R.; Frade, P.R. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome. Microorganisms 2022, 10, 1988. https://doi.org/10.3390/microorganisms10101988
Díaz-Abad L, Bacco-Mannina N, Miguel Madeira F, Serrao EA, Regalla A, Patrício AR, Frade PR. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome. Microorganisms. 2022; 10(10):1988. https://doi.org/10.3390/microorganisms10101988
Chicago/Turabian StyleDíaz-Abad, Lucía, Natassia Bacco-Mannina, Fernando Miguel Madeira, Ester A. Serrao, Aissa Regalla, Ana R. Patrício, and Pedro R. Frade. 2022. "Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome" Microorganisms 10, no. 10: 1988. https://doi.org/10.3390/microorganisms10101988
APA StyleDíaz-Abad, L., Bacco-Mannina, N., Miguel Madeira, F., Serrao, E. A., Regalla, A., Patrício, A. R., & Frade, P. R. (2022). Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle (Chelonia mydas) Gut Microbiome. Microorganisms, 10(10), 1988. https://doi.org/10.3390/microorganisms10101988