Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Sampling
2.3. Determination of Soil Physicochemical Properties and Organic Carbon Characteristics
2.4. Soil DNA Extraction and PCR Amplification
2.5. High-throughput Sequencing of Bacterial 16S rRNA Gene and Fungal ITS1 Gene
2.6. Data Analysis
3. Results and Analysis
3.1. Soil Physicochemical Properties and Organic Carbon Characteristics
3.2. Microbial α-Diversity
3.3. Microbial ß-Diversity
3.4. Microbial Community Composition
3.5. Microbial Diversity and Environmental Indices
3.6. Microbial Community and Environmental Indices
4. Discussion
4.1. Effects of Water Level and Vegetation Type on SOC Characteristics in Wetland
4.2. Effects of Water Level and Vegetation Type on Soil Bacterial and Fungal Communities in Wetland
4.3. Relationship between SOC Characteristics and Microbial Community in Wetland
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2009, 30, 111–124. [Google Scholar] [CrossRef]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.W.; Wu, Q.; Liu, Y.; Li, X.F.; Yao, B.; Zhong, Z.; Lu, W.S. A review of carbon cycle in wetlands. Ecol. Environ. Sci. 2009, 18, 2381–2386. [Google Scholar]
- Yan, X.F.; Qiu, Z.M.; Guo, K.S. Development and prospect on land use/cover change and carbon cycle in typical wetland area of Poyang lake. In Proceedings of the International Conference on Electric Technology and Civil Engineering, Lushan, China, 22–24 April 2011. [Google Scholar]
- Yadav, N.; Singh, D.P. Microalgae and microorganisms: Important regulators of carbon dynamics in wetland ecosystem. In Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment; Springer: Singapore, 2020; pp. 179–193. [Google Scholar]
- Zhang, X.; Zhao, X.; Zhang, M. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge. FEMS Microbiol. Ecol. 2012, 80, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.Y.; Jia, J.; Chen, L.T.; Chu, H.Y.; He, H.S.; Zhang, Y.J.; Feng, X.J. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biol. Biochem. 2021, 156, 108213. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, W.; Xiao, Y.T.; Cheng, A.Q.; Shen, T.M.; Zhu, M.; Yu, L.J. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena 2021, 204, 105418. [Google Scholar] [CrossRef]
- Fenner, N.; Freeman, C.; Reynolds, B. Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: Implications for carbon cycling. Soil Biol. Biochem. 2005, 37, 1277–1287. [Google Scholar] [CrossRef]
- Zou, F.; Li, J.Q.; Han, L.L.; Ma, Y.T.; Wang, B.H.; Ge, G.; Wu, L. Response of soil microbial functional traits to annually hydrological changes in Lake Poyang wetlands. J. Lake Sci. 2019, 31, 249–257. [Google Scholar]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Tamea, S. Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour. Res. 2007, 43, W09301. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, X.J.; Zhou, X.; Meng, Y.; Jia, Z.J. Impact of periodical flooding-drying on nitrification and ammonia oxidizers in hydro-fluctuation belt of the Three Gorges Reservoir. Acta Microbiol. Sin. 2016, 56, 983–999. [Google Scholar]
- Geng, Y.; Wang, D.M.; Yang, W.B. Effects of different inundation periods on soil enzyme activity in riparian zones in Lijiang. Catena 2017, 149, 19–27. [Google Scholar] [CrossRef]
- Ladygina, N.; Hedlund, K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 2010, 42, 162–168. [Google Scholar] [CrossRef]
- Zak, D.R.; Holmes, W.; White, D.C.; Peacock, A.D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakue, M.P.; Mommer, L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.G.; Haung, G.Q.; Qian, H.Y. Ecological environment and sustainable development of lake. Acta Pedol. Sin. 2007, 44, 318–326. [Google Scholar]
- Dong, X.H.; Anderson, N.J.; Yang, X.D.; Chen, X.; Shen, J. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Chang. Biol. 2012, 18, 2205–2217. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, X.D.; Zhang, M.; Yu, Y.; Zhang, Y.H.; Peng, W.Q. Microbial community structure and functional properties in permanently and seasonally flooded areas in Poyang Lake. Sci. Rep. 2020, 10, 4819. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Q.; Li, X.H. Variation of Soil Nutrients and Microbial Community Diversity in the Wetland of Poyang Lake. Ecol. Environ. Sci. 2019, 28, 385–394. [Google Scholar]
- Zhang, G.S.; Yu, X.B.; Zhang, Q.J.; Li, Y.; Liu, Y.; Duan, H.L. Variation in the distribution of soil microbial community structure along ground water level gradients in the Poyang Lake Wetland. Acta Ecol. Sin. 2018, 38, 3825–3837. [Google Scholar]
- Dai, X.; Wan, R.R.; Yang, G.S. Non-stationary water-level fluctuation in China’s Poyang Lake and its interactions with Yangtze River. J. Geogr. Sci. 2015, 25, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Ma, G.Q.; Liao, L.J.; Li, J.; Li, Y. Seasonal Variation of Bird Diversity at Wucheng Peninsula, Poyang Lake. For. Resour. Manag. 2018, 2, 83–92. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Miscellaneous Paper Institute for Agricultural Research Samaru; US Department of Agriculture: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 539–579. [Google Scholar]
- Sun, H.M.; Jiang, J.; Cui, L.N.; Feng, W.T.; Wang, Y.G.; Zhang, J.C. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 2019, 673, 502–510. [Google Scholar] [CrossRef]
- Janzen, H.H.; Campbell, C.A.; Brandt, S.A.; Lafond, F.P.; Townley-Smith, L. Light-Fraction Organic Matter in Soils from Long-Term Crop Rotations. Soil Sci. Soc. Am. J. 1992, 56, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Manirakiza, E.; Ziadi, N.; Luce, M.; Hame, C.; Antoun, H.; Karam, A. Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids. Appl. Soil Ecol. 2019, 142, 90–98. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, Z.C.; Yu, Z.Q.; Shen, G.F.; Cheng, H.F.; Tao, S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Sci. Total Environ. 2020, 747, 141358. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Li, Y.; Zhang, X.D.; Yan, Z.Q.; Wu, H.D.; Li, M.; Yan, L.; Zhang, K.R.; Wang, J.Z.; Kang, X.M. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Cao, L.; Song, J.M.; Wang, Q.D.; Li, X.G.; Yuan, H.M.; Li, N.; Duan, L.Q. Characterization of Labile Organic Carbon in Different Coastal Wetland Soils of Laizhou Bay, Bohai Sea. Wetlands 2017, 37, 163–175. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Organic matter accumulation in submerged soils. Adv. Agr. 2004, 81, 169–201. [Google Scholar]
- Regier, P.; Briceno, H.; Jaffé, R. Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary. Estuar. Coast. Shelf Sci. 2016, 182, 112–122. [Google Scholar] [CrossRef]
- Xu, S.Q.; Zhang, M.Y.; Zhang, H.L.; Chen, F.; Yang, G.L.; Xiao, X.P. Soil Organic Carbon Stocks as Affected by Tillage Systems in a Double-Cropped Rice Field. Pedosphere 2013, 23, 696–704. [Google Scholar] [CrossRef]
- Wang, X.L.; Xu, L.G.; Wan, R.R. Comparison on soil organic carbon within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Hydrol. Res. 2016, 47, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Qin, J.; Sun, H.; Jia, Z.; Chen, Y. Alpine soil microbial community structure and diversity are largely influenced by moisture content in the Zoige wetland. Int. J. Environ. Sci. Technol. 2021. [CrossRef]
- Dijk, J.V.; Didden, W.A.M.; Kuenen, F.; van Bodegom, P.M.; Verhoef, H.A.; Aerts, R. Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates? Soil Biol. Biochem. 2009, 41, 1717–1725. [Google Scholar] [CrossRef]
- Ma, Y.T.; Li, J.Q.; Wu, J.; Kong, Z.Y.; Feinstein, L.M.; Ding, X.; Ge, G.; Wu, L. Bacterial and Fungal Community Composition and Functional Activity Associated with Lake Wetland Water Level Gradients. Sci. Rep. 2018, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Su, T.Y.; Liu, W.J.; Yang, Q.; Mao, W. Review on response of soil carbon cycle to groundwater level change. J. Desert Res. 2020, 40, 182–191. [Google Scholar]
- Li, Y.L.; Wang, L.; Zhang, W.Q.; Wang, H.L.; Fu, X.H.; Le, Y.Q. The variability of soil microbial community composition of different types of tidal wetland in Chongming Dongtan and its effect on soil microbial respiration. Ecol. Eng. 2011, 37, 1276–1282. [Google Scholar] [CrossRef]
- Cook, R.J.; Papendick, R.I. Soil water potential as a factor in the ecology of Fusarium roseum f. sp. cerealis ‘Culmorum’. Plant Soil 1970, 32, 131–145. [Google Scholar] [CrossRef]
- Li, W.H.; Shao, X.X.; Wu, M.; Liang, W. Microbial community characteristic of soils with different vegetation in tidal flat in hangzhou bay. Wetland Sci. 2013, 11, 413–420. [Google Scholar]
- Du, Z.X.; Zeng, H.D.; Huang, X.H.; Wei, G.J.; Li, X.B.; Zhang, J.; Yang, Y.S. Soil Respiration and Controlling Factors at Phragmites communis Community in Riverside Wetlands. J. Subtrop. Resour. Environ. 2010, 5, 49–55. [Google Scholar]
- Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences 2015, 12, 2585–2596. [Google Scholar] [CrossRef] [Green Version]
Group | pH | WC (%) | TP (g kg−1) | TC (%) | TN (g kg−1) | C/N | SOC (g kg−1) | HFOC (g kg−1) | LFOC (g kg−1) | POC (g kg−1) | DOC (g kg−1) | MBC (g kg−1) | MBN (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HP | 5.05a | 20.59b | 0.417a | 0.681a | 0.503b | 13.55a | 5.27b | 3.776b | 0.832a | 1.544a | 0.109b | 0.926b | 0.018a |
HT | 5.15a | 25.53a | 0.454a | 0.928a | 0.701ab | 13.35a | 7.30ab | 5.38ab | 1.392a | 3.655a | 0.169b | 1.420a | 0.030a |
LP | 5.02a | 28.15a | 0.394a | 1.190a | 1.111a | 10.78b | 11.03a | 8.138a | 1.289a | 4.259a | 0.370a | 1.497a | 0.029a |
LT | 4.97a | 26.81a | 0.446a | 1.076a | 0.835ab | 13.08a | 8.55ab | 6.35ab | 1.322a | 3.922a | 0.150b | 1.453a | 0.028a |
Significance based on Two-way ANOVA (p) | |||||||||||||
VT | 0.784 | 0.077 | 0.266 | 0.697 | 0.787 | 0.085 | 0.882 | 0.935 | 0.104 | 0.327 | 0.034 | 0.110 | 0.155 |
WL | 0.230 | 0.001 | 0.682 | 0.080 | 0.029 | 0.021 | 0.045 | 0.044 | 0.266 | 0.118 | 0.005 | 0.042 | 0.260 |
VT × WT | 0.378 | 0.008 | 0.852 | 0.304 | 0.128 | 0.047 | 0.164 | 0.167 | 0.141 | 0.188 | 0.002 | 0.064 | 0.118 |
Group | OTU_Num | Seqs_Num | Richness | Diversity | Evenness | ||
---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | Pielou | |||
HP | 1003 ± 7b | 9273 ± 9.2d | 1137 ± 19c | 1143 ± 23.2b | 0.995 ± 0.000a | 8.714 ± 0.008a | 1.261 ± 0.001a |
HT | 1080 ± 13a | 10,116 ± 40c | 1238 ± 16a | 1223 ± 12a | 0.994 ± 0.000b | 8.612 ± 0.029b | 1.233 ± 0.002b |
LP | 1010 ± 10b | 11,307 ± 11b | 1149 ± 12bc | 1145 ± 9b | 0.992 ± 0.000d | 8.298 ± 0.020d | 1.200 ± 0.001d |
LT | 1063 ± 3a | 11,785 ± 17a | 1191 ± 13ab | 1185 ± 17ab | 0.993 ± 0.000c | 8.485 ± 0.021c | 1.218 ± 0.003c |
Significance based on Two-way ANOVA | |||||||
VT | 0.000 | 0.000 | 0.002 | 0.006 | 0.587 | 0.074 | 0.049 |
WL | 0.577 | 0.000 | 0.281 | 0.295 | 0.000 | 0.000 | 0.000 |
VT × WT | 0.198 | 0.000 | 0.084 | 0.258 | 0.000 | 0.000 | 0.000 |
Group | OTU_Num | Seqs_Num | Richness | Diversity | Evenness | ||
---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | Pielou | |||
HP | 377 ± 2c | 27,069 ± 18a | 413 ± 4b | 419 ± 5b | 0.907 ± 0.001d | 4.813 ± 0.008d | 0.811 ± 0.001d |
HT | 427 ± 3b | 26,771 ± 25b | 472 ± 5a | 475 ± 5a | 0.927 ± 0.001c | 5.284 ± 0.015c | 0.873 ± 0.002c |
LP | 439 ± 3a | 26,321 ± 35c | 456 ± 4ab | 464 ± 6a | 0.943 ± 6.667b | 5.47 ± 0.005b | 0.900 ± 0.002b |
LT | 430 ± 2b | 26,799 ± 29b | 461 ± 4ab | 469 ± 39a | 0.947 ± 0.000a | 5.574 ± 0.005a | 0.919 ± 0.002a |
Significance based on Two-way ANOVA | |||||||
VT | 0.000 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
WL | 0.000 | 0.000 | 0.006 | 0.003 | 0.000 | 0.000 | 0.000 |
VT × WT | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Index | Bacteria | Fungi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ACE | Chao1 | Simpson | Shannon | Pielou | ACE | Chao1 | Simpson | Shannon | Pielou | |
pH | 0.232 | 0.154 | 0.363 | 0.319 | 0.262 | 0.090 | 0.053 | −0.240 | −0.194 | −0.224 |
TN | −0.007 | −0.015 | −0.822 ** | −0.831 ** | −0.805 ** | 0.410 | 0.468 | 0.624 * | 0.611 * | 0.598 * |
TP | 0.551 | 0.590 * | 0.179 | 0.247 | 0.106 | −0.003 | −0.012 | 0.004 | 0.060 | 0.084 |
TC | 0.167 | 0.166 | −0.717 ** | −0.693 * | −0.714 ** | 0.419 | 0.473 | 0.597 * | 0.604 * | 0.603 * |
WC | 0.269 | 0.221 | −0.912 ** | −0.852 ** | −0.926 ** | 0.745 ** | 0.768 ** | 0.863 ** | 0.879 ** | 0.863 ** |
C/N | 0.320 | 0.333 | 0.742 ** | 0.814 ** | 0.708 ** | −0.229 | −0.258 | −0.462 | −0.414 | −0.384 |
SOC | 0.040 | 0.037 | −0.783 ** | −0.787 ** | −0.772 ** | 0.379 | 0.432 | 0.599 * | 0.592 * | 0.584 * |
HFOC | 0.039 | 0.038 | −0.790 ** | −0.790 ** | −0.777 ** | 0.397 | 0.454 | 0.607 * | 0.601 * | 0.592 * |
LFOC | 0.465 | 0.410 | −0.521 | −0.474 | −0.585 * | 0.657 * | 0.718 ** | 0.558 | 0.613 * | 0.600 * |
POC | 0.317 | 0.328 | −0.693 * | −0.622 * | −0.694 * | 0.559 | 0.554 | 0.610 * | 0.638 * | 0.631 * |
DOC | −0.195 | −0.229 | −0.758 ** | −0.815 ** | −0.750 ** | 0.308 | 0.294 | 0.494 | 0.466 | 0.433 |
MBC | 0.513 | 0.488 | −0.707 * | −0.638 * | −0.759 ** | 0.687 * | 0.694 * | 0.725 ** | 0.768 ** | 0.756 ** |
MBN | 0.513 | 0.494 | −0.527 | −0.462 | −0.577 * | 0.605 * | 0.585 * | 0.527 | 0.590* | 0.577 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Yuan, J.; Wang, J.; Liu, X.; Ma, S.; Zhou, L.; Miao, L.; Zhang, J. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms 2022, 10, 131. https://doi.org/10.3390/microorganisms10010131
Ren Q, Yuan J, Wang J, Liu X, Ma S, Zhou L, Miao L, Zhang J. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms. 2022; 10(1):131. https://doi.org/10.3390/microorganisms10010131
Chicago/Turabian StyleRen, Qiong, Jihong Yuan, Jinping Wang, Xin Liu, Shilin Ma, Liyin Zhou, Lujun Miao, and Jinchi Zhang. 2022. "Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type" Microorganisms 10, no. 1: 131. https://doi.org/10.3390/microorganisms10010131
APA StyleRen, Q., Yuan, J., Wang, J., Liu, X., Ma, S., Zhou, L., Miao, L., & Zhang, J. (2022). Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms, 10(1), 131. https://doi.org/10.3390/microorganisms10010131