Energy Harvesting of Ionic Polymer-Metal Composites Based on Microcellular Foamed Nafion in Aqueous Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Measurements
2.2.1. Foaming Ratio
2.2.2. Water Uptake Capability
2.2.3. Scanning Electron Microscopy
2.2.4. Energy Harvesting Device
2.2.5. Calibration
3. Results and Discussion
3.1. Cell Morphology of Microcellular Foamed IPMC according to Foaming Ratio
3.2. Electrical Characteristics of Microcellular Foamed IPMC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, L.; Kuo, K. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation. Sensors 2007, 7, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Sodano, H.; Inman, D.; Park, G. Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. J. Intell. Mater. Syst. Struct. 2005, 16, 799–807. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J.O.; Smith, J. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—A review. Smart Mater. Struct. 1998, 7, R15–R30. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 2001, 10, 819–833. [Google Scholar] [CrossRef]
- Kim, K.; Shahinpoor, M. Ionic polymer metal composites: II. Manufacturing techniques. Smart Mater. Struct. 2003, 12, 65–79. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, M.S.; Shin, S.R.; Kim, I.Y.; Kim, S.I.; Lee, S.H.; Lee, T.S.; Spinks, G.M. Enhancement of the electromechanical behavior of IPMCs based on chitosan/polyaniline ion exchange membranes fabricated by freeze-drying. Smart Mater. Struct. 2005, 14, 889–894. [Google Scholar] [CrossRef]
- Lee, H.; Choi, N.; Jung, S.; Park, K.; Jung, H.; Shim, J.; Ryu, J.; Kim, J. Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module. ETRI J. 2009, 31, 695–702. [Google Scholar] [CrossRef]
- Tan, X. Autonomous Robotic Fish as Mobile Sensor Platforms: Challenges and Potential Solutions. Mar. Technol. Soc. J. 2011, 45, 31–40. [Google Scholar] [CrossRef]
- Abdulrab, H.; Mohd Nordin, I.; Muhammad Razif, M.; Mohd Faudzi, A. Snake-like Soft Robot Using 2-Chambers Actuator. ELEKTRIKA-J. Electr. Eng. 2018, 17, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, Y.; Aoki, S.; Kamamichi, N. Wireless control snake-like underwater propulsion robot using ionic polymer-metal composite actuator. Proc. JSME Annu. Conf. Robot. Mechatron. (Robomec) 2018, 2018, 2P1–H12. [Google Scholar] [CrossRef]
- Kamamichi, N.; Yamakita, M.; Asaka, K.; Mukai, T. 1P1-G01 A Snake-like Swimming Robot with IPMC Actuator/Sensor: Propulsive Property and Experiment of Autonomous Locomotion. Proc. JSME Annu. Conf. Robot. Mechatron. (Robomec) 2007, 2007, _1P1-G01_1–_1P1-G01_4. [Google Scholar]
- Zhu, Z.; Chen, H.; Li, B.; Wang, Y. Characteristics and Elastic Modulus Evaluation of Pd-Nafion Ionic Polymer-Metal Composites. Adv. Mater. Res. 2010, 97–101, 1590–1594. [Google Scholar] [CrossRef]
- Bennett, M.; Leo, D. Ionic liquids as stable solvents for ionic polymer transducers. Sens. Actuator A Phys. 2004, 115, 79–90. [Google Scholar] [CrossRef]
- Akle, B.; Leo, D. Characterization and modeling of extensional and bending actuation in ionomeric polymer transducers. Smart Mater. Struct. 2007, 16, 1348–1360. [Google Scholar] [CrossRef]
- Chen, Z.; Hedgepeth, D.; Tan, X. A nonlinear, control-oriented model for ionic polymer–metal composite actuators. Smart Mater. Struct. 2009, 18, 055008. [Google Scholar] [CrossRef]
- Lee, S.; Han, M.; Kim, S.; Jho, J.; Lee, H.; Kim, Y. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater. Struct. 2006, 15, 1217–1224. [Google Scholar] [CrossRef]
- Jo, C.; Pugal, D.; Oh, I.K.; Kim, K.J.; Asaka, K. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog. Polym. Sci. 2013, 38, 1037–1066. [Google Scholar] [CrossRef]
- Palmre, V.; Brandell, D.; Maeorg, U.; Torop, J.; Volobujeva, O.; Punning, A.; Johanson, U.; Kruusmaa, M.; Aabloo, A. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater. Struct. 2009, 18, 095028. [Google Scholar] [CrossRef]
- Guo, D.J.; Fu, S.J.; Tan, W.; Dai, Z.D. A highly porous Nafion membrane templated from polyoxometalates-based supramolecule composite for ion-exchange polymer-metal composite actuator. J. Mater. Chem. 2010, 20, 10159–10168. [Google Scholar] [CrossRef]
- Vunder, V.; Itik, M.; Poldsalu, I.; Punning, A.; Aabloo, A. Inversion-based control of ionic polymer-metal composite actuators with nanoporous carbon-based electrodes. Smart Mater. Struct. 2014, 23, 025010. [Google Scholar] [CrossRef]
- Jung, S.Y.; Ko, S.Y.; Park, J.O.; Park, S. Enhanced ionic polymer metal composite actuator with porous Nafion membrane using zinc oxide particulate leaching method. Smart Mater. Struct. 2015, 24, 037007. [Google Scholar] [CrossRef]
- Zhao, D.; Li, D.; Wang, Y.; Chen, H. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators. Smart Mater. Struct. 2016, 25, 075043. [Google Scholar] [CrossRef]
- He, Q.; Liu, Z.; Yin, G.; Yue, Y.; Yu, M.; Li, H.; Ji, K.; Xu, X.; Dai, Z.; Chen, M. The highly stable air-operating ionic polymer metal composite actuator with consecutive channels and its potential application in soft gripper. Smart Mater. Struct. 2020, 29, 045013. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; Qi, W.; Xie, H.; Yin, K.; Tong, Y.; He, J.; Gong, S.; Li, Z. Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction. Chem. Eng. J. 2020, 383, 123086. [Google Scholar] [CrossRef]
- Leichsenring, P.; Serdas, S.; Wallmersperger, T.; Bluhm, J.; Schröder, J. Electro-chemical aspects of IPMCs within the framework of the theory of porous media. Smart Mater. Struct. 2017, 26, 045004. [Google Scholar] [CrossRef]
- Cha, S.W. A Microcellular Foaming/Forming Process Performed at Ambient Temperature and a Super Microcellular Foaming Process. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1994. [Google Scholar]
- Cha, S.W.; Suh, N.P.; Baldwin, D.F.; Park, C.B. Microcellular Thermoplastic Foamed with Supercritical Fluid. U.S. Patent 5,158,986, 27 October 1992. [Google Scholar]
- Colton, J.; Suh, N. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym. Eng. Sci. 1987, 27, 485–492. [Google Scholar] [CrossRef]
- Colton, J.; Suh, N. The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polym. Eng. Sci. 1987, 27, 493–499. [Google Scholar] [CrossRef]
- Oguro, K.; Ion-Exchange Polymer Metal Composites (IPMC) Membranes. Preparation Procedure. Available online: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm (accessed on 17 June 2020).
- Li, S.; Yip, J. Characterization and Actuation of Ionic Polymer Metal Composites with Various Thicknesses and Lengths. Polymers 2019, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Sheng, J.; Xu, D.; Gao, M.; Meng, Q.; Wu, D.; Wang, L.; Lv, W.; Chen, Q.; Xiao, J.; et al. Improve the Performance of Mechanoelectrical Transduction of Ionic Polymer-Metal Composites Based on Ordered Nafion Nanofibres by Electrospinning. Polymers 2018, 10, 803. [Google Scholar] [CrossRef] [Green Version]
- Giacomello, A.; Porfiri, M. Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J. Appl. Phys. 2011, 109, 40–202. [Google Scholar] [CrossRef]
- Cha, Y.; Abdolhamidi, S.; Porfiri, M. Energy harvesting from underwater vibration of an annular ionic polymer metal composite. Meccanica 2015, 50, 2675–2690. [Google Scholar] [CrossRef]
- Ru, J.; Wang, Y.; Chang, L.; Chen, H.; Li, D. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion mats and so-based ionic polymer metal composite actuators. Smart Mater. Struct. 2016, 25, 095006. [Google Scholar] [CrossRef]
Experimental Condition | NF | F1 | F2 | F3 |
---|---|---|---|---|
Saturation Press. (MPa) | 5 | 5 | 5 | |
Saturation Temp.(°C) | - | 40 | 40 | 20 |
Saturation Time (h) | - | 24 | 24 | 24 |
Foaming Temp.(°C) | - | 120 | 140 | 140 |
Foaming Time (s) | - | 20 | 20 | 20 |
Experimental Condition | |
---|---|
Input Signal Wave | Sine |
Input Signal Voltage (V) | 1, 5 |
Input Signal Frequency (Hz) | 0.8, 1.6, 3.2, 4.8, 6.4, 8.0, 9.6, 11.1, 12.7, 14.3, 15.9 |
Specimen Number | Density (g/m3) | Foaming Ratio (%) | Thickness (μm) |
---|---|---|---|
NF | 1.99 | 0.0 | 249 |
F1 | 1.98 | 0.5 | 254 |
F2 | 1.84 | 8.2 | 263 |
F3 | 1.71 | 16.4 | 271 |
Specimen Number | Water Content (%) | Capacitance (μF) |
---|---|---|
NF | 24.9 | 0.020 |
F1 | 26.8 | 0.045 |
F2 | 30.9 | 0.042 |
F3 | 35.8 | 0.060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kweon, B.C.; Sohn, J.S.; Ryu, Y.; Cha, S.W. Energy Harvesting of Ionic Polymer-Metal Composites Based on Microcellular Foamed Nafion in Aqueous Environment. Actuators 2020, 9, 71. https://doi.org/10.3390/act9030071
Kweon BC, Sohn JS, Ryu Y, Cha SW. Energy Harvesting of Ionic Polymer-Metal Composites Based on Microcellular Foamed Nafion in Aqueous Environment. Actuators. 2020; 9(3):71. https://doi.org/10.3390/act9030071
Chicago/Turabian StyleKweon, Byung Chul, Joo Seong Sohn, Youngjae Ryu, and Sung Woon Cha. 2020. "Energy Harvesting of Ionic Polymer-Metal Composites Based on Microcellular Foamed Nafion in Aqueous Environment" Actuators 9, no. 3: 71. https://doi.org/10.3390/act9030071
APA StyleKweon, B. C., Sohn, J. S., Ryu, Y., & Cha, S. W. (2020). Energy Harvesting of Ionic Polymer-Metal Composites Based on Microcellular Foamed Nafion in Aqueous Environment. Actuators, 9(3), 71. https://doi.org/10.3390/act9030071