#
Characteristics and Analysis of an Eddy Current Shock Absorber Damper Using Finite Element Analysis^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Construction and Materials

#### 2.2. Electromagnetic Simulation of ECD

#### 2.3. Quarter-Car Model

_{1}, m

_{2}). The model parameters are listed in Table 2.

## 3. Results

#### 3.1. Force Calculations from the FEM Model

#### 3.2. Quarter-Car Model Response

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Wiederick, H.D.; Gauthier, N.; Campbell, D.A.; Rochon, P. Magnetic braking: Simple theory and experiment. Am. J. Phys.
**1987**, 55, 500–503. [Google Scholar] [CrossRef] - Ma, D.-M.; Shiau, J.-K. The design of eddy-current magnet brakes. Trans. Can. Soc. Mech. Eng.
**2011**, 35. [Google Scholar] [CrossRef] - Adly, A.A.; Abd-El-Hafiz, S.K. Speed Range Based Optimization of Non-linear Electromagnetic Braking Systems. IEEE Trans. Magn.
**2007**, 43, 2606–2608. [Google Scholar] [CrossRef] - Saxena, A.; Patel, R.K. Vibration control of cantilever beam using Eddy Current Damper. Int. J. Eng. Sci. Innov. Technol. (IJESIT)
**2013**, 2. [Google Scholar] - Bae, J.; Hwang, J.; Kwag, D.; Park, J.; Inman, D.J. Vibration Suppression of a Large Beam Structure Using Tuned Mass Damper and Eddy Current Damping. Shock Vib.
**2014**, 2014, 893914. [Google Scholar] [CrossRef] - Singh, R.; Sharma, M.; Singh, V.P. An Experimental Study of Vibration Control of Cantilever Beam Using Eddy Current Damper. Int. J. Appl. Eng. Res.
**2012**, 7. [Google Scholar] - Graves, K.E.; Tonicich, D.; Iovenitti, P.G. Theoretical comparison of motional and transformer EMF device damping efficiency. J. Sound Vib.
**2012**, 233, 441–453. [Google Scholar] [CrossRef] - Tonoli, A. Dynamic characteristics of eddy current dampers and couplers. J. Sound Vib.
**2007**, 301, 576–591. [Google Scholar] [CrossRef] - Sodano, H.A.; Bae, J.-S.; Inman, D.J.; Belvin, W.K. Improved Concept and Model of Eddy Current Damper. J. Vib. Acoust.
**2005**, 128, 294–302. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, M.F. Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib.
**2008**, 315, 875–889. [Google Scholar] [CrossRef] - Bae, J.-S.; Hwang, J.-H.; Park, J.-S.; Kwag, D.-G. Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube. J. Mech. Sci. Technol.
**2009**, 23, 3024–3035. [Google Scholar] [CrossRef] - Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, F. Eddy current damper feasibility in automobile suspension: Modeling, simulation and testing. Smart Mater. Struct.
**2009**, 18. [Google Scholar] [CrossRef] - Kim, S.-W.; Jung, H.-K.; Hahn, S.-Y. Experimental Study for Dynamic Characteristics of Eddy Current Shock Absorber. J. Korean Soc. Aeronaut. Space Sci.
**2007**, 35, 1089–1094. [Google Scholar] - Guo, L.; Guo, N.; Wang, S.; Qiu, J.; Zhu, J.G.; Guo, Y.; Wang, Y. Performance of hybrid electromagnetic damper for vehicle suspension. Int. J. Innov. Eng. Res. Technol.
**2015**, 2. [Google Scholar] - Adly, A.A.; Abd-El-Hafiz, S.K. Active electromagnetic suspension system design using hybrid neural-swarm optimization. Int. J. Appl. Electromagn. Mech.
**2013**, 43, 85–91. [Google Scholar] [CrossRef] - Adly, A.A.; Adly, M.A. Utilizing Electromechanical Energy Harvesting in Vehicle Suspension Vibration Damping. In Proceedings of the 23rd IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016; pp. 672–675. [Google Scholar]
- Abdullah, A.A.; Abdo, T.M.; Huzayyin, A.A.; Adly, A.A. Performance Analysis of Eddy Current Shock Absorber Damper Using Finite Element Analysis. In Proceedings of the 19th International Middle-East Power Systems Conference (MEPCON 2017), Cairo, Egypt, 19–21 December 2017. [Google Scholar]
- Paulides, J.J.H.; Encica, L.; Lomonova, E.A.; Vandenput, A.J.A. Design Considerations for a Semi-Active Electromagnetic Suspension System. IEEE Trans. Magn.
**2006**, 42, 3446–3448. [Google Scholar] [CrossRef] - Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A. Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Trans. Veh. Technol.
**2010**, 59, 1156–1163. [Google Scholar] [CrossRef][Green Version] - Grant, A.M. Analysis of Automotive Damper Data and Design of a Portable Measurement System. Ph.D. Thesis, The Ohio State University, Department of Mechanical Engineering, Center for Automotive Research, Columbus, OH, USA, 2005. [Google Scholar]

**Figure 1.**Axisymmetric view for the eddy current damper configurations: (

**a**) Model I, (

**b**) Model II, (

**c**) Model III, (

**d**) Model IV.

**Figure 2.**Quarter car suspension model with Eddy Current Damper [17].

**Figure 3.**MATLAB/Simulink model [17].

**Figure 9.**Comparison between the suspension displacement response during road disturbance, between Models I and II.

**Figure 10.**Comparison between the suspension displacement response during road disturbance, between Models II and III.

**Figure 11.**Comparison between the suspension displacement response during road disturbance, between Models II and IV.

Parameter | Model I | Model II | Model III | Model IV |
---|---|---|---|---|

Stator length (L_{s}) | 21 cm | 21 cm | 21 cm | 10.5 cm |

Translator length (L_{t}) | 30 cm | 30 cm | 30 cm | 30 cm |

Stator iron thickness (h_{i}) | 2 cm | 2 cm | 2 cm | 2 cm |

Magnets thickness (h_{m}) | 2 cm | 2 cm | 2 cm | 2 cm |

Al. layer thickness (H_{a}) | - | 1 cm | 1 cm | 1 cm |

Iron core radius (R_{c}) | 1.9 cm | 1.8 cm | 1.8 cm | 1.8 cm |

Air gap length (d) | 0.2 cm | 0.2 cm | 0.2 cm | 0.2 cm |

Parameter | Value |
---|---|

Sprung mass (${m}_{1}$) | 466 kg |

Un-sprung mass (${m}_{2}$) | 50 kg |

Spring stiffness (K_{1}) | 5700 |

Tire stiffness (K_{2}) | 135,000 |

Suspension damping coefficient (B_{1}) | 290 |

Tire damping coefficient (B_{2}) | 1400 |

Hydraulic Damper | Model I | Model II | |
---|---|---|---|

Performance relative to volume | Good | Excellent | Excellent |

Weight | High (about 10 kg) | Low (6.7 kg) | Fair (9.1 kg) |

Manufacturing cost | Fair | Low | High |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abdo, T.M.; Huzayyin, A.A.; Abdallah, A.A.; Adly, A.A. Characteristics and Analysis of an Eddy Current Shock Absorber Damper Using Finite Element Analysis. *Actuators* **2019**, *8*, 77.
https://doi.org/10.3390/act8040077

**AMA Style**

Abdo TM, Huzayyin AA, Abdallah AA, Adly AA. Characteristics and Analysis of an Eddy Current Shock Absorber Damper Using Finite Element Analysis. *Actuators*. 2019; 8(4):77.
https://doi.org/10.3390/act8040077

**Chicago/Turabian Style**

Abdo, Tamer M., Ahmed A. Huzayyin, Ahmed A. Abdallah, and Amr A. Adly. 2019. "Characteristics and Analysis of an Eddy Current Shock Absorber Damper Using Finite Element Analysis" *Actuators* 8, no. 4: 77.
https://doi.org/10.3390/act8040077