Similarity Analysis of Upper Extremity’s Trajectories in Activities of Daily Living for Use in an Intelligent Control System of a Rehabilitation Exoskeleton
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Modelled Motions
2.3. Motion Registering
- Conduct heading reset of IMUs;
- Hold the extremity still in a default position;
- Repeat the investigated ADL ten times;
- Finish the recording and transfer it to a hard drive.
2.4. Motion Processing
- Load data and remove measurement value range limits;
- Compute the initial orientations of the IMUs;
- Assume default orientations of the body segments’ frames;
- Compute the motion of the body segments’ frames;
- Compute the rotation history in the joints.
2.5. Data Structure
2.6. Motion Segmentation
2.7. Mathematical Methods for Similarity Analysis
3. Results and Discussion
3.1. Motion Analysis
3.2. Motion Similarity
- Eating with a fork (003) and eating with a spoon (002), and drinking (004);
- Back washing/scratching on the lower back (008) and back washing/scratching on the upper back (009);
- Pulling an object (001) and window cleaning (014);
- Mixing (015) and floor mopping/vacuuming (013).
- The similar activation of all DOFs and target position of the characteristic point of the hand for eating and drinking;
- Similar shoulder and elbow flexion/extension for washing and scratching for both regions of the back;
- Similar shoulder adduction/abduction and elbow flexion/extension for pulling an object and window cleaning;
- Similar shoulder adduction/abduction and elbow flexion/extension for mixing and floor mopping/vacuuming.
3.3. Planned Implementation
4. Conclusions
- Measuring defined ADLs’ trajectories using IMU sensors;
- Computing joint variables for the extremity model based on the angular trajectories;
- Dividing recorded trajectories into segments based on the motion sub-functionalities;
- Analysing the similarities between motions and between segments with the defined mathematical metrics.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Disability and Social Participation in Europe; Office for Official Publications of the European Communities: Luxemberg, 2001. [Google Scholar]
- Fareh, R.; Elsabe, A.; Baziyad, M.; Kawser, T.; Brahmi, B.; Rahman, M.H. Will Your Next Therapist Be a Robot?—A Review of the Advancements in Robotic Upper Extremity Rehabilitation. Sensors 2023, 23, 5054. [Google Scholar] [CrossRef]
- Devittori, G.; Dinacci, D.; Romiti, D.; Califfi, A.; Petrillo, C.; Rossi, P.; Ranzani, R.; Gassert, R.; Lambercy, O. Unsupervised robot-assisted rehabilitation after stroke: Feasibility, effect on therapy dose, and user experience. J. Neuroeng. Rehabil. 2024, 21, 52. [Google Scholar] [CrossRef]
- Devittori, G.; Ranzani, R.; Dinacci, D.; Romiti, D.; Califfi, A.; Petrillo, C.; Rossi, P.; Gassert, R.; Lambercy, O. Automatic and Personalized Adaptation of Therapy Parameters for Unsupervised Robot-Assisted Rehabilitation: A Pilot Evaluation. In Proceedings of the IEEE International Conference on Rehabilitation Robotics 2022, Rotterdam, The Netherlands, 25–29 July 2022. [Google Scholar] [CrossRef]
- Falkowski, P.; Oleksiuk, J.; Jeznach, K.; Aktan, M.E. Method of automatic biomedical signals interpretation for safety supervision and optimisation of the exoskeleton-aided physiotherapy of lower extremity. In Proceedings of the 2024 4th International Conference on Robotics and Control Engineering, Edinburgh, UK, 27–29 June 2024; pp. 57–63. [Google Scholar] [CrossRef]
- Ouendi, N.; Hubaut, R.; Pelayo, S.; Anceaux, F.; Wallard, L. The rehabilitation robot: Factors influencing its use, advantages and limitations in clinical rehabilitation. Disabil. Rehabil. Assist. Technol. 2024, 19, 546–557. [Google Scholar] [CrossRef]
- Falkowski, P.; Rzymkowski, C.; Pilat, Z. Analysis of Rehabilitation Systems in Regards to Requirements Towards Remote Home Rehabilitation Devices. J. Autom. Mob. Robot. Intell. Syst. 2023, 17, 61–73. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, S.; Sun, Q. An Assist-as-Needed Controller for Passive, Assistant, Active, and Resistive Robot-Aided Rehabilitation Training of the Upper Extremity. Appl. Sci. 2021, 11, 340. [Google Scholar] [CrossRef]
- Wilk, J.; Falkowski, P.; Osiak, T. The Overview of Challenges in Detecting Patients’ Hazards During Robot-Aided Remote Home Motor Rehabilitation. J. Autom. Mob. Robot. Intell. Syst. 2023, 17, 17–27. [Google Scholar] [CrossRef]
- Falkowski, P.; Osiak, T.; Wilk, J.; Prokopiuk, N.; Leczkowski, B.; Pilat, Z.; Rzymkowski, C. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation. Sensors 2023, 23, 911. [Google Scholar] [CrossRef]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef]
- Bessler-Etten, J.; Schaake, L.; Prange-Lasonder, G.B.; Buurke, J.H. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator. J. Neuroeng. Rehabil. 2022, 19, 13. [Google Scholar] [CrossRef]
- Fritz, H.; Patzer, D.; Galen, S.S. Robotic exoskeletons for reengaging in everyday activities: Promises, pitfalls, and opportunities. Disabil. Rehabil. 2019, 41, 560–563. [Google Scholar] [CrossRef]
- Oña, E.D.; Garcia-Haro, J.M.; Jardón, A.; Balaguer, C. Robotics in Health Care: Perspectives of Robot-Aided Interventions in Clinical Practice for Rehabilitation of Upper Limbs. Appl. Sci. 2019, 9, 2586. [Google Scholar] [CrossRef]
- Röijezon, U.; Treleaven, J. Management of the Sensorimotor System: The Cervical Region. In Grieve’s Modern Musculoskeletal Physiotherapy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 310–315. [Google Scholar]
- Falkowski, P.; Jeznach, K. Simulation of a control method for active kinesiotherapy with an upper extremity rehabilitation exoskeleton without force sensor. J. Neuroeng. Rehabil. 2024, 21, 22. [Google Scholar] [CrossRef]
- Mohebbi, A. Human-Robot Interaction in Rehabilitation and Assistance: A Review. Curr. Robot. Rep. 2020, 1, 131–144. [Google Scholar] [CrossRef]
- Chellal, A.A.; Lima, J.; Gonçalves, J.; Fernandes, F.P.; Pacheco, F.; Monteiro, F.; Brito, T.; Soares, S. Robot-Assisted Rehabilitation Architecture Supported by a Distributed Data Acquisition System. Sensors 2022, 22, 9532. [Google Scholar] [CrossRef]
- Aktan, M.E.; Akdoğan, E. Development of an intelligent controller for robot-aided assessment and treatment guidance in physical medicine and rehabilitation. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 403–420. [Google Scholar] [CrossRef]
- Kozlenia, D.; Domaradzki, J. Prediction and injury risk based on movement patterns and flexibility in a 6-month prospective study among physically active adults. PeerJ 2021, 9, e11399. [Google Scholar] [CrossRef]
- Falkowski, P. An optimisation problem for exoskeleton-aided functional rehabilitation of an upper extremity. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1239, 012012. [Google Scholar] [CrossRef]
- Correa, C.L.; Liou, T.H.; Barrios, M. Editorial: ICF-based rehabilitation for neurological disease. Front. Rehabil. Sci. 2022, 3, 995070. [Google Scholar] [CrossRef]
- Numbers, K.; Jang, S.; Brodaty, H.; Sachdev, P.S.; Draper, B.; Reppermund, S. Instrumental Activities of Daily Living by Subjective and Objective Measures: The Impact of Depression and Personality. Front. Aging Neurosci. 2022, 14, 829544. [Google Scholar] [CrossRef]
- Liao, Y.; Vakanski, A.; Xian, M. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 468–477. [Google Scholar] [CrossRef]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.G.; Ekkelenkamp, R.; Van Asseldonk, E.H.F.; Van Der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef]
- Project SmartEx-Home. Available online: https://piap.lukasiewicz.gov.pl/badanie/projekt-smartexhome/ (accessed on 18 September 2024).
- Pashmdarfard, M.; Azad, A. Assessment tools to evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in older adults: A systematic review. Med. J. Islam Repub. Iran 2020, 34, 33. [Google Scholar] [CrossRef]
- McGrath, T.; Stirling, L. Body-Worn IMU Human Skeletal Pose Estimation Using a Factor Graph-Based Optimization Framework. Sensors 2020, 20, 6887. [Google Scholar] [CrossRef]
- Vitali, R.V.; Perkins, N.C. Determining anatomical frames via inertial motion capture: A survey of methods. J. Biomech. 2020, 106, 109832. [Google Scholar] [CrossRef]
- Calle-Siguencia, J.; Callejas-Cuervo, M.; García-Reino, S. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton. Sensors 2022, 22, 4559. [Google Scholar] [CrossRef]
- Movella DOT|Movella.com n.d. Available online: https://www.movella.com/products/wearables/movella-dot (accessed on 18 September 2024).
- Muller, P.; Begin, M.A.; Schauer, T.; Seel, T. Alignment-Free, Self-Calibrating Elbow Angles Measurement Using Inertial Sensors. IEEE J. Biomed. Health Inf. 2017, 21, 312–319. [Google Scholar] [CrossRef]
- Xsens. Xsens DOT User Manual; Xsens: Enschede, The Netherlands, 2021. [Google Scholar]
- Saudabayev, A.; Rysbek, Z.; Khassenova, R.; Atakan Varol, H. Human grasping database for activities of daily living with depth, color and kinematic data streams. Sci. Data 2018, 5, 180101. [Google Scholar] [CrossRef]
- Roda-Sales, A.; Jarque-Bou, N.J.; Bayarri-Porcar, V.; Gracia-Ibáñez, V.; Sancho-Bru, J.L.; Vergara, M. Electromyography and kinematics data of the hand in activities of daily living with special interest for ergonomics. Sci. Data 2023, 10, 814. [Google Scholar] [CrossRef]
- ADL Human Arm Motion Data|IEEE DataPort n.d. Available online: https://ieee-dataport.org/documents/adl-human-arm-motion-data (accessed on 18 September 2024).
- ASCC Activities of Daily Living Dataset|IEEE DataPort n.d. Available online: https://ieee-dataport.org/documents/ascc-activities-daily-living-dataset (accessed on 18 September 2024).
ADL Name | Segment Number | Movement Description |
---|---|---|
Eating with a spoon | 1 | Reaching for a spoon |
Eating with a spoon | 2 | Scooping food onto a spoon |
Eating with a spoon | 3 | Lifting the spoon to the mouth |
Eating with a spoon | 4 | Putting the spoon on the plate |
Motion | Gender | DOF1 | DOF2 | DOF3 | DOF4 | DOF5 |
---|---|---|---|---|---|---|
1 | M | 170 | 104.34 | 153.23 | 117.42 | 103.68 |
F | 170 | 112.91 | 160 | 100.2 | 57.15 | |
2 | M | 68.76 | 51.99 | 41.66 | 134.31 | 108.74 |
F | 95.95 | 66.92 | 54.53 | 116.16 | 131.48 | |
3 | M | 69.4 | 70.35 | 32.98 | 122.62 | 148.67 |
F | 70.97 | 63.25 | 41.86 | 110.85 | 113.01 | |
4 | M | 75.66 | 52.37 | 29.46 | 140.76 | 105.85 |
F | 88.32 | 69.31 | 44.68 | 119.98 | 83.15 | |
5 | M | 71.76 | 77.26 | 67.9 | 117.68 | 65.9 |
F | 69.39 | 64.18 | 66.56 | 90.62 | 28.7 | |
6 | M | 76.12 | 82.98 | 41.9 | 115.8 | 140.67 |
F | 78.27 | 68.84 | 57.15 | 101.73 | 107.22 | |
7 | M | 103.13 | 44.65 | 63.55 | 138.54 | 120.94 |
F | 78.03 | 76.49 | 83.08 | 113.13 | 78.91 | |
8 | M | 110.2 | 74.05 | 138.33 | 129.58 | 162 |
F | 94.61 | 49.12 | 137.62 | 127.62 | 128.56 | |
9 | M | 160.78 | 42.82 | 70.82 | 134.71 | 117.56 |
F | 170 | 30.83 | 97.81 | 144.74 | 86.46 | |
10 | M | 170 | 113.23 | 122.01 | 121.69 | 131.48 |
F | 170 | 115.31 | 160 | 144.14 | 88.15 | |
11 | M | 61.03 | 82.22 | 35.66 | 122.58 | 133.76 |
F | 82.05 | 62.61 | 52.32 | 126.4 | 103.39 | |
12 | M | 146.15 | 108.17 | 125.73 | 76.19 | 133.19 |
F | 86.32 | 114.43 | 47.98 | 69.94 | 104.46 | |
13 | M | 137.52 | 158.65 | 148.75 | 145 | 162 |
F | 131.97 | 95.94 | 77.03 | 101.54 | 116.12 | |
14 | M | 112.99 | 115.76 | 128.63 | 72.82 | 161.1 |
F | 130.75 | 114.91 | 136.41 | 96.2 | 125.94 | |
15 | M | 64.85 | 95.5 | 52.8 | 91.47 | 162 |
F | 87.52 | 76.82 | 32.7 | 111.79 | 98.04 | |
16 | M | 87.01 | 96.36 | 88.12 | 69.23 | 142.17 |
F | 92.59 | 117.26 | 74.4 | 97.58 | 127.01 | |
17 | M | 69.36 | 106.71 | 69.23 | 94.65 | 142.14 |
F | 98 | 103.2 | 68.09 | 109.83 | 122.18 | |
18 | F | 60.41 | 49.93 | 67.84 | 121.26 | 85.92 |
19 | M | 94.51 | 108.09 | 89.14 | 136.47 | 151.28 |
20 | M | 86.78 | 159.18 | 45.44 | 105.68 | 162 |
F | 125.34 | 138.98 | 120.15 | 96.58 | 140.79 | |
21 | M | 63.46 | 79.14 | 27.11 | 107.75 | 130.3 |
F | 85.38 | 90.42 | 84.08 | 91.74 | 106.99 | |
22 | M | 170 | 149.14 | 154.26 | 139.68 | 107.48 |
Segment Number | Similarity to |
---|---|
001-01 | 012-01, 014-1 |
001-02 | 012-02 |
002-01 | 003-01, 004-01, 006-01, 010-01, 011-01, 013-01, 015-01, 016-01, 018-01, 018-01, 019-01, 020-01, 021-01, 022-01 |
002-03 | 003-03 |
002-04 | 003-04 |
007-01 | 009-01 |
007-04 | 009-04 |
011-03 | 018-03 |
011-04 | 018-04 |
011-08 | 018-05 |
014-04 | 019-06, 022-05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowski, P.; Pikuliński, M.; Osiak, T.; Jeznach, K.; Zawalski, K.; Kołodziejski, P.; Zakręcki, A.; Oleksiuk, J.; Śliż, D.; Osiak, N. Similarity Analysis of Upper Extremity’s Trajectories in Activities of Daily Living for Use in an Intelligent Control System of a Rehabilitation Exoskeleton. Actuators 2025, 14, 324. https://doi.org/10.3390/act14070324
Falkowski P, Pikuliński M, Osiak T, Jeznach K, Zawalski K, Kołodziejski P, Zakręcki A, Oleksiuk J, Śliż D, Osiak N. Similarity Analysis of Upper Extremity’s Trajectories in Activities of Daily Living for Use in an Intelligent Control System of a Rehabilitation Exoskeleton. Actuators. 2025; 14(7):324. https://doi.org/10.3390/act14070324
Chicago/Turabian StyleFalkowski, Piotr, Maciej Pikuliński, Tomasz Osiak, Kajetan Jeznach, Krzysztof Zawalski, Piotr Kołodziejski, Andrzej Zakręcki, Jan Oleksiuk, Daniel Śliż, and Natalia Osiak. 2025. "Similarity Analysis of Upper Extremity’s Trajectories in Activities of Daily Living for Use in an Intelligent Control System of a Rehabilitation Exoskeleton" Actuators 14, no. 7: 324. https://doi.org/10.3390/act14070324
APA StyleFalkowski, P., Pikuliński, M., Osiak, T., Jeznach, K., Zawalski, K., Kołodziejski, P., Zakręcki, A., Oleksiuk, J., Śliż, D., & Osiak, N. (2025). Similarity Analysis of Upper Extremity’s Trajectories in Activities of Daily Living for Use in an Intelligent Control System of a Rehabilitation Exoskeleton. Actuators, 14(7), 324. https://doi.org/10.3390/act14070324