An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration
Abstract
1. Introduction
2. Robot Design and Method
3. Materials and Methods
3.1. Overview of Shape Memory Alloy Spring
3.2. Experimental Devices and Procedures
3.3. Electrical-Thermal-Mechanical Characteristics
4. Kinematics and Mechanics Characteristics
5. Experimental Verification
5.1. Motion Experiment
5.2. Expansion, Contraction and Deflection Experiments
5.3. Experiment of Climbing Motion in a Pipe
5.4. Experiment of Climbing Motion in a Winding Pipe
5.5. Experiment of Expansion and Contraction in Extreme Cold Environments
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Cao, J.; Zhang, H.; Wang, M.Y.; Zhu, J.; Zhang, Y.F. Programmable deformations of networked inflated dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 2018, 24, 45–55. [Google Scholar] [CrossRef]
- Wang, H.; Ni, H.; Wang, J.; Chen, W. Hybrid Vision/Force Control of Soft Robot Based on a Deformation Model. IEEE Trans. Control Syst. Technol. 2021, 29, 661–671. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wang, L.; Gu, Z.Z.; Quan, Q.Q.; Deng, J. Development of a Two-Dimensional Linear Piezoelectric Stepping Platform Using Longitudinal-Bending Hybrid Actuators. IEEE Trans. Ind. Electron. 2019, 66, 3030–3040. [Google Scholar] [CrossRef]
- Zhang, J.S.; Chen, H.L. Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dyn. 2020, 100, 2225–2239. [Google Scholar] [CrossRef]
- Sun, X.T.; Wang, F.; Xu, J. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. Int. J. Mech. Sci. 2021, 193, 1059–1066. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149–161. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Trimmer, B.A.; Lin, H.T.; Baryshyan, A.; Leisk, G.G.; Kaplan, D.L. Towards a biomorphic soft robot: Design constraints and solutions. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 599–605. [Google Scholar]
- Peng, Y.; Nabae, H.; Funabora, Y.; Suzumori, K. Controlling a peristaltic robot inspired by inchworms. Biomim. Intell. Robot. 2024, 4, 100146. [Google Scholar] [CrossRef]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Wang, W.; Lee, J.Y.; Rodrigue, H.; Song, S.H.; Chu, W.S.; Ahn, S.H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 2014, 9, 046006. [Google Scholar] [CrossRef]
- Rodriguez-Arco, L.; Poma, A.; Ruiz-Perez, L.; Scarpa, E.; Ngamkham, K.; Battaglia, G. Molecular bionics–engineering biomaterials at the molecular level using biological principles. Biomaterials 2019, 192, 26–50. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Yadav, V.G. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots. Trends Biotechnol. 2018, 36, 483–487. [Google Scholar] [CrossRef]
- Manoonpong, P.; Parlitz, U.; Worgotter, F. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front. Neural Circuits 2013, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Full, R.J. Invertebrate Locomotor Systems. Compr. Physiol. 2011, 12, 853–930. [Google Scholar]
- Peng, Y.; Nabae, H.; Funabora, Y.; Suzumori, K. Peristaltic transporting device inspired by large intestine structure. Sens. Actuators A Phys. 2024, 365, 114840. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Haomachai, W.; Shao, D.H.; Wang, W.; Ji, A.H.; Dai, Z.D.; Manoonpong, P. Lateral Undulation of the Bendable Body of a Gecko-Inspired Robot for Energy-Efficient Inclined Surface Climbing. IEEE Robot. Autom. Lett. 2021, 6, 7918–7925. [Google Scholar] [CrossRef]
- Qiu, J.; Ji, A.; Zhu, K.; Han, Q.; Wang, W.; Qi, Q.; Chen, G. A Gecko-Inspired Robot with a Flexible Spine Driven by Shape Memory Alloy Springs. Soft Robot. 2023, 10, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Z.; Hu, Z.; Dai, K. Lateral undulation of the flexible spine of sprawling posture vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2018, 204, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Consumi, V.; Lindenroth, L.; Merlin, J.; Stoyanov, D.; Stilli, A. Design and Evaluation of the SoftSCREEN Capsule for Colonoscopy. IEEE Robot. Autom. Lett. 2023, 8, 1659–1666. [Google Scholar] [CrossRef]
- Omori, H.; Nakamura, T.; Yada, T. An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot. 2009, 36, 358–364. [Google Scholar] [CrossRef]
- Tanaka, T.; Harigaya, K.; Nakamura, T. Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. IEEE/ASME Trans. Adv. Intell. Mechatron. 2014, 19, 1552–1557. [Google Scholar]
- Dewapura, J.I.; Hemachandra, P.S.; Dananjaya, T.; Awantha, W.V.; Wanasinghe, A.T.; Kulasekera, A.L.; Chathuranga, D.S.; Dassanayake, V.P. Design and development of a novel bio-inspired worm-type soft robot for in-pipe locomotion. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2020; Volume 586, pp. 586–591. [Google Scholar]
- Yu, W.; Li, X.; Chen, D.; Liu, J.; Su, J.; Liu, J.; Cao, C.; Yuan, H. A minimally designed soft crawling robot for robust locomotion in unstructured pipes. Bioinspir. Biomim. 2022, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Arena, P.; Patané, L.; Spinosa, A.G. A nullcline-based control strategy for PWL-shaped oscillators. Nonlinear Dyn. 2019, 97, 1011–1033. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Zuo, S. Actuation and design innovations in earthworm-inspired soft robots: A review. Front. Bioeng. Biotechnol. 2023, 11, 1088105. [Google Scholar] [CrossRef]
- Whitesides, G.M. Soft robotics. Angew. Chem. Int. Ed. Engl. 2018, 57, 4258–4273. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Holmes, P. Mechanical models for insect locomotion: Active muscles and energy losses. Biol. Cybern. 2003, 89, 43–55. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Deng, J.; Zhang, S.; Li, J.; Wang, W.; Liu, J.; Chen, W.; Quan, Q.; Liu, G.; et al. Miniature amphibious robot actuated by rigid-flexible hybrid vibration modules. Adv. Sci. 2022, 9, e2203054. [Google Scholar] [CrossRef]
- Sanku, N.; Yudong, L.; Yantao, S.; Jin, K.K. Enabling earthworm-like soft robot development using bioinspired IPMC-scissor lift actuation structures: Design, locomotion simulation and experimental validation. Robot. Biomim. 2015, 499, 499–504. [Google Scholar]
- Fang, H.; Zhang, U.; Wang, K.W. An earthworm-like robot using origami-ball structures. Proc. SPIE 2017, 10164, 10164. [Google Scholar]
- Luo, Y.; Zhao, N.; Shen, Y.; Li, P. A rigid morphing mechanism enabled earthworm-like crawling robot. J. Mech. Robot. 2023, 15, 1. [Google Scholar] [CrossRef]
- Appiah, C.; Arndt, C.; Siemsen, K.; Heitmann, A.; Staubitz, A.; Selhuber-Unkel, C. Living materials herald a new era in soft robotics. Adv. Mater. 2019, 31, e1807747. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Kumar, K.; Jawed, M.K.; Nasab, A.M.; Ye, Z.; Shan, W.; Majidi, C. Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators. Sci. Robot. 2018, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pané, S.; Han, M.W.; Ahn, S.H. Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects. Adv. Mater. 2023, 35, e2208517. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, U.; Park, C.H. A novel fabric muscle based on shape memory alloy springs. Soft Robot. 2020, 7, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fang, H.; Xu, J. Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability. Front. Robot. AI 2021, 8, 738214. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, M.; Song, B.; Yang, J.; Kim, D.; Jin, M.; Yun, D. Review of the latest research on snake robots focusing on the structure, motion and control method. Int. J. Control Autom. Syst. 2022, 20, 3393–3409. [Google Scholar] [CrossRef]
- Liu, J.; Tong, Y.; Liu, J. Review of snake robots in constrained environments. Robot. Auton. Syst. 2021, 141, 103785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Yao, J.; Yu, Y.; Zhao, G. An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration. Actuators 2025, 14, 94. https://doi.org/10.3390/act14020094
Tang S, Yao J, Yu Y, Zhao G. An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration. Actuators. 2025; 14(2):94. https://doi.org/10.3390/act14020094
Chicago/Turabian StyleTang, Shufeng, Jianan Yao, Yue Yu, and Guoqing Zhao. 2025. "An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration" Actuators 14, no. 2: 94. https://doi.org/10.3390/act14020094
APA StyleTang, S., Yao, J., Yu, Y., & Zhao, G. (2025). An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration. Actuators, 14(2), 94. https://doi.org/10.3390/act14020094