Soft Robotic Honeycomb-Velcro Jamming Gripper Design
Abstract
:1. Introduction
2. Design Jamming Gripper
2.1. Honeycomb Sandwich Structure
2.2. Finger Skeleton and Gripper Frame
3. Materials and Fabrication
3.1. Honeycomb and Fabric
Reinforcements and Outer Membrane
3.2. Gripper Assembly and Control
4. Results
4.1. Bending Load Test
4.1.1. Reinforcement Comparison
4.1.2. Statistical Result Analysis
4.2. Effect of Pressure on the Honeycomb Jamming Finger
4.3. Demonstration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Zhou, L.; Ren, L.; Chen, Y.; Niu, S.; Han, Z.; Ren, L. Bio-Inspired Soft Grippers Based on Impactive Gripping. Adv. Sci. 2021, 8, 2002017. [Google Scholar] [CrossRef] [PubMed]
- Bui, S.T.; Kawano, S.; Ho, V.A. ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects. In Proceedings of the Robotics: Science and Systems, Daegu, Republic of Korea, 10–14 July 2023. [Google Scholar] [CrossRef]
- Goh, G.L.; Ng, T.Y. Joint angle prediction for a cable-driven gripper with variable joint stiffness through numerical modeling and machine learning. Int. J. AI Mater. Des. 2024, 1, 62. [Google Scholar] [CrossRef]
- Xuan Hiep, T.; My, C.A.; Van Binh, P.; Hieu, L.C. Innovative development of a soft robotic gripper: Mathematical modeling and grasping capability analysis. Mech. Based Des. Struct. Mach. 2024, 52, 4991–5018. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Dhyan, S.B.; Mai, V.; Han, B.S.; Chow, W.T. Bioinspiration and Biomimetic Art in Robotic Grippers. Micromachines 2023, 14, 1772. [Google Scholar] [CrossRef]
- AboZaid, Y.A.; Aboelrayat, M.T.; Fahim, I.S.; Radwan, A.G. Soft robotic grippers: A review on technologies, materials, and applications. Sensors Actuators A Phys. 2024, 372, 115380. [Google Scholar] [CrossRef]
- Muralidharan, S.T.; Andrikopoulos, G.; Feng, L. A Survey on the Current Trends and Applications of Design Optimization for Compliant and Soft Robotics. In Proceedings of the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Seattle, DC, USA, 27 June–1 July 2023. [Google Scholar]
- Wang, X.; Lin, A.; Yuan, W.; Hu, H.; Cheng, G.; Ding, J. Design of an actuator with bionic claw hook–suction cup hybrid structure for soft robot. Bioinspir. Biomimetics 2024, 19, 036021. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Chow, W.T.; Dhyan, S.B.; Zhang, B.; Han, B.S.; Wong, H.Y.A. Low-Cost Cable-Driven Robot Arm with Low-Inertia Movement and Long-Term Cable Durability. Robotics 2024, 13, 128. [Google Scholar] [CrossRef]
- Jo, Y.; Park, Y.; Son, H.I. A suction cup-based soft robotic gripper for cucumber harvesting: Design and validation. Biosyst. Eng. 2024, 238, 143–156. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Luu, Q.; Takamura, Y.; Ho, V. Wet Adhesion of Micro-patterned Interfaces for Stable Grasping of Deformable Objects. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 9213–9219. [Google Scholar]
- Li, H.; Xie, D.; Xie, Y. A Soft Pneumatic Gripper with Endoskeletons Resisting Out-of-Plane Bending. Actuators 2022, 11, 246. [Google Scholar] [CrossRef]
- Le, P.H.; Thien, P.D.; Du, B.L. A Soft Pneumatic Finger with Different Patterned Profile. Int. J. Mech. Eng. Robot. Res. 2021, 110, 577–582. [Google Scholar]
- Li, S.; Yin, X.; Xia, C.; Ye, L.; Wang, X.; Liang, B. TaTa: A Universal Jamming Gripper with High-Quality Tactile Perception and Its Application to Underwater Manipulation. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 6151–6157. [Google Scholar]
- De Rodrigo, I.; Belart, J.; Lopez-Lopez, A.J. Universal Jamming Gripper: Experimental Analysis on Envelope and Granular Materials. Machines 2024, 12, 52. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Sunil, D.B.; Chow, W.T. Soft-stable interface in grasping multiple objects by wiring-tension. Sci. Rep. 2023, 13, 21537. [Google Scholar] [CrossRef] [PubMed]
- Gai, L.J.; Huang, J.; Zhang, Y.; Zong, X.; Ding, H. A Soft Finger With Tensile Variable Stiffness Based on the Cross-Sliding Jamming Mechanism. IEEE Robot. Autom. Lett. 2024, 9, 3427–3434. [Google Scholar] [CrossRef]
- Clark, A.B.; Rojas, N. Stiffness-Tuneable Limb Segment with Flexible Spine for Malleable Robots. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3969–3975. [Google Scholar]
- Goh, G.L.; Goh, G.D.; Nguyen, V.P.; Toh, W.; Lee, S.; Li, X.; Sunil, B.D.; Lim, J.Y.; Li, Z.; Sinha, A.K.; et al. A 3D Printing-Enabled Artificially Innervated Smart Soft Gripper with Variable Joint Stiffness. Adv. Mater. Technol. 2023, 8, 2301426. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, X.; Ma, G.; Tao, B.; Yin, Z. Design of 3D-printed Cable Driven Humanoid Hand Based on Bidirectional Elastomeric Passive Transmission. Chin. J. Mech. Eng. 2021, 34, 76. [Google Scholar] [CrossRef]
- Nikafrooz, N.; Leonessa, A. A Single-Actuated, Cable-Driven, and Self-Contained Robotic Hand Designed for Adaptive Grasps. Robotics 2021, 10, 109. [Google Scholar] [CrossRef]
- Kim, U.; Jung, D.; Jeong, H.; Park, C. Integrated linkage-driven dexterous anthropomorphic robotic hand. Nat. Commun. 2021, 12, 7177. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ge, S.S. Modeling and Control of an Octopus Inspired Soft Arm under Prescribed Spatial Motion Constraints. J. Intell. Robot. Syst. 2023, 109, 94. [Google Scholar] [CrossRef]
- Fu, J.t. A Novel Discrete Variable Stiffness Gripper Based on the Fin Ray Effect. In Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2022; pp. 791–802. [Google Scholar]
- Yang, J.; Kang, R. Design of a Flexible Capture Mechanism Inspired by Sea Anemone for Non-cooperative Targets. Chin. J. Mech. Eng. 2022, 34, 77. [Google Scholar] [CrossRef]
- Deshpande, S.; Almubarak, Y. Octopus-Inspired Robotic Arm Powered by Shape Memory Alloys (SMA). Actuators 2023, 12, 377. [Google Scholar] [CrossRef]
- Cheng, P.; Jia, J.; Ye, Y.; Wu, C. Modeling of a Soft-Rigid Gripper Actuated by a Linear-Extension Soft Pneumatic Actuator. Sensors 2021, 21, 493. [Google Scholar] [CrossRef] [PubMed]
- Marullo, S.; Bartoccini, S.; Salvietti, G.; Iqbal, M.Z.; Prattichizzo, D. The Mag-Gripper: A Soft-Rigid Gripper Augmented With an Electromagnet to Precisely Handle Clothes. IEEE Robot. Autom. Lett. 2020, 5, 6591–6598. [Google Scholar] [CrossRef]
- The ability of underactuated hands to grasp and hold objects. Mech. Mach. Theory 2010, 45, 408–425. [CrossRef]
- Nam, N.D.; Linh, H.N.; Thanh-Phong, D.; Ngoc, L.C. Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsyst. Technol. 2019, 25, 3991–4009. [Google Scholar]
- Aeron, S.; Llontop, E.; Adler, A.; Agboh, W.C.; Dogar, M.; Goldberg, K. Push-MOG: Efficient Pushing to Consolidate Polygonal Objects for Multi-Object Grasping. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–6. [Google Scholar]
- Chen, H.; Zhu, J.; Cao, Y.; Xia, Z.; Chai, Z.; Ding, H.; Wu, Z. Soft-rigid coupling grippers: Collaboration strategies and integrated fabrication methods. Sci. China Technol. Sci. 2023, 66, 3051–3069. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.; Jiang, P.; Guo, C.; Sun, Y. Research on a Variable-Stiffness Joint and Its Application in Actuators. Actuators 2023, 12, 397. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, Y.; Chen, G.; Wu, Q.; Wang, H.; Jiang, H. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Sci. Adv. 2023, 9, eadg1203. [Google Scholar] [CrossRef]
- Li, D.; Chen, S.; Song, Z.; Liang, J.; Zhu, X.; Chen, F. Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping. Sci. China Technol. Sci. 2023, 66, 2026–2034. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, W.; Long, Y.; Dai, J.; Luo, J.; Tang, S.; Lu, Q.; Wang, X.; Wang, H.; Chen, G. Hybrid-Driven Origami Gripper with Variable Stiffness and Finger Length. Cyborg Bionic Syst. 2024, 5, 0103. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Pancheri, F.; Lueth, T.C. LARG: A Lightweight Robotic Gripper With 3-D Topology Optimized Adaptive Fingers. IEEE/ASME Trans. Mechatronics 2022, 27, 2026–2034. [Google Scholar] [CrossRef]
- Govindan, N.; Ramachandran, B.; Sai, P.H.V.; Krishna, K.M. A Novel Hybrid Gripper Capable of Grasping and Throwing Manipulation. IEEE/ASME Trans. Mechatronics 2023, 28, 3317–3328. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Chow, W.T. Wiring-Claw Gripper for Soft-Stable Picking up Multiple Objects. IEEE Robot. Autom. Lett. 2023, 8, 3972–3979. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Le, T.L. Hybrid robot hand for stably manipulating one group objects. Arch. Mech. Eng. 2022, 69, 375–391. [Google Scholar] [CrossRef]
- Seo, Y.S.; Lee, J.Y.; Park, C.; Park, J.; Han, B.K.; Koh, J.S.; Kim, U.; Rodrigue, H.; Bak, J.; Song, S.H. Highly Shape-Adaptable Honeycomb Gripper Using Orthotropic Surface Tension. IEEE Trans. Ind. Electron. 2024, 71, 2662–2671. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Bodaghi, M.; Serjouei, A.; Afazov, S.; Zolfagharian, A. Soft Pneumatic Actuators with Controllable Stiffness by Bio-Inspired Lattice Chambers and Fused Deposition Modeling 3D Printing. Adv. Eng. Mater. 2023, 25, 2200797. [Google Scholar] [CrossRef]
- Roth, F.; Eschen, H.; Schüppstuhl, T. The Loop Gripper: A Soft Gripper for Honeycomb Materials. Procedia Manuf. 2021, 55, 160–167. [Google Scholar] [CrossRef]
- Uses of Fiberglass Fabrics. Available online: https://rb.gy/4tiv5f (accessed on 28 April 2024).
Combination | Acronym |
---|---|
Aluminum + Cotton Cloth | AC |
Aluminum + Fiberglass fabric | AF |
Nomex + Cotton Cloth | NC |
Nomex + Fiberglass fabric | NF |
Nomex + Cotton Cloth + Velcro 1 side | NCV1 |
Nomex + Cotton Cloth + Velcro 2 side | NCV2 |
Nomex + Cotton Cloth + 0.2 mm Metal plate 1 side | NCM1 |
Nomex + Cotton Cloth + 0.2 mm Metal plate 2 side | NCM2 |
Nomex + Cotton Cloth + 0.5 mm Metal plate 1 side | NCM3 |
Nomex + Cotton Cloth + 0.5 mm Metal plate + Velcro | NCMV |
Objects | Mass (g) | Diameter (cm) | Pick Up |
---|---|---|---|
Egg | 50 | 4.3 | ✓ |
Apple | 150 | 7.5 | ✓ |
Orange | 200 | 7.8 | ✓ |
Pear | 270 | 7.6 | ✓ |
Avocado | 190 | 5.5 | ✓ |
Metal object | 220 | 6.8 | ✓ |
Soft toy | 25 | 5.2 | ✓ |
Coffee can | 330 | 5.0 | ✓ |
Cylinder bottle | 85 | 6.0 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.C.; Chow, W.T.; Nguyen, V.P. Soft Robotic Honeycomb-Velcro Jamming Gripper Design. Actuators 2024, 13, 359. https://doi.org/10.3390/act13090359
Chung YC, Chow WT, Nguyen VP. Soft Robotic Honeycomb-Velcro Jamming Gripper Design. Actuators. 2024; 13(9):359. https://doi.org/10.3390/act13090359
Chicago/Turabian StyleChung, Yu Cheng, Wai Tuck Chow, and Van Pho Nguyen. 2024. "Soft Robotic Honeycomb-Velcro Jamming Gripper Design" Actuators 13, no. 9: 359. https://doi.org/10.3390/act13090359
APA StyleChung, Y. C., Chow, W. T., & Nguyen, V. P. (2024). Soft Robotic Honeycomb-Velcro Jamming Gripper Design. Actuators, 13(9), 359. https://doi.org/10.3390/act13090359