The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking
Abstract
:1. Introduction
2. Dynamics Modeling
- Platform: it provides a flat and stable working surface.
- Guiding mechanism: the guiding mechanism is responsible for ensuring the linearity of the platform’s motion. The mechanism accurately directs the motion of the moving parts, minimizing deviations from the intended linear path.
- U joint: the U joint is a pivotal component that provides rotational freedom in two dimensions. It allows for the movement in two planes at the same time, enhancing the flexibility and range of motion of the piezoelectric tip/tilt platform.
- Bridge amplifier: the bridge amplifier functions to enhance the piezoelectric tip/tilt platform’s motion. It amplifies the travel distance and also enables the conversion of motion direction.
- PZT actuator: The PZT actuator is a piezoelectric actuator that generates precise displacements. It is capable of providing minute steps in movement, which is essential for the high-precision micro/nanopositioning stage.
- Base board: the base board is the foundational structure of the piezoelectric tip/tilt platform, serving as its base. It supports the entire system, providing stability and anchoring the platform and other components.
3. Sliding Mode Controller Design
4. Experimental Setup
4.1. Experimental Equipment
4.2. System Identification
4.3. Controller Setup
4.4. Experimental Test Steps
- (1)
- Assemble the piezoelectric tip/tilt platform on the isolation table to prevent the large shaking of environment.
- (2)
- Connect the PZT actuator controller to the piezoelectric tip/tilt platform, the controller to computer, and the laser interferometer to the computer.
- (3)
- Turn on the power and air supply of the isolation table. And the experiment should be carried out only when the table is ready. Connect the laser interferometer power supply and preheat the laser interferometer.
- (4)
- Wait for the laser interferometer to reach the operating temperature. Adjust the laser interferometer until five stable green lights appear.
- (5)
- Open the LabVIEW 2020 software and the written program. Connect the computer and PZT actuator controller. And start the experimental test.
5. Results and Discussion
5.1. Tracking Error Testing Results
5.2. Resolution Ratio Test for Platform Rotational Movement
5.3. Discussion
- (1)
- The system’s high-frequency dynamics caused by the chattering effect.
- (2)
- A more accurate model for hysteresis has not yet been developed.
- (3)
- The need for more efficient methods for parameter identification.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, D.; Nagel, W.S.; Clayton, G.M.; Leang, K.K. Spatial-Temporal Trajectory Redesign for Dual-Stage Nanopositioning Systems With Application in AFM. IEEE ASME Trans. Mechatron. 2020, 25, 558–569. [Google Scholar] [CrossRef]
- Habibullah, H. 30 Years of atomic force microscopy: Creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement 2020, 159, 107776. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Chen, W.; Yu, H. A XY Transporting and Nanopositioning Piezoelectric Robot Operated by Leg Rowing Mechanism. IEEE ASME Trans. Mechatron. 2019, 24, 207–217. [Google Scholar] [CrossRef]
- Chang, Q.; Gao, X.; Liu, Y.; Deng, J.; Zhang, S.; Chen, W. Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture. Mech. Syst. Signal Process. 2022, 174, 109072. [Google Scholar] [CrossRef]
- Yu, S.; Xie, M.; Wu, H.; Ma, J.; Li, Y.; Gu, H. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation. ISA Trans. 2022, 124, 427–435. [Google Scholar] [CrossRef]
- Liu, Y.T. Recent Development of Piezoelectric Fast Tool Servo (FTS) for Precision Machining. Int. J. Precis. Eng. Manuf. 2024, 25, 851–874. [Google Scholar] [CrossRef]
- Morita, T. Miniature piezoelectric motors. Sens. Actuators A Phys. 2003, 103, 291–300. [Google Scholar] [CrossRef]
- Delibas, B.; Koc, B. A method to realize low velocity movability and eliminate friction induced noise in piezoelectric ultrasonic motors. IEEE/ASME Trans. Mechatron. 2020, 25, 2677–2687. [Google Scholar] [CrossRef]
- Sabarianand, D.; Karthikeyan, P.; Muthuramalingam, T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech. Syst. Signal Process. 2020, 140, 106634. [Google Scholar] [CrossRef]
- Mohith, S.; Upadhya, A.R.; Navin, K.P.; Kulkarni, S.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater. Struct. 2020, 30, 013002. [Google Scholar] [CrossRef]
- Kong, L.; Li, D.; Zou, J.; He, W. Neural Networks Based Learning Control for a Piezoelectric Nanopositioning System. IEEE ASME Trans. Mechatron. 2020, 25, 2904–2914. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, X.; Shi, J.; Zhang, X. Damping-enabling technologies for broadband control of piezo-stages: A survey. Annu. Rev. Control 2021, 52, 120–134. [Google Scholar] [CrossRef]
- Hazeleger, L.; Beerens, R.; van de Wouw, N. Proportional-Integral-Derivative-Based Learning Control for High-Accuracy Repetitive Positioning of Frictional Motion Systems. IEEE Trans. Control Syst. Technol. 2021, 29, 1652–1663. [Google Scholar] [CrossRef]
- Gambhire, S.; Kishore, D.R.; Londhe, P.; Pawar, S. Review of sliding mode based control techniques for control system applications. Int. J. Dyn. Control 2021, 9, 363–378. [Google Scholar] [CrossRef]
- Somefun, O.A.; Akingbade, K.; Dahunsi, F. The dilemma of PID tuning. Annu. Rev. Control 2021, 52, 65–74. [Google Scholar] [CrossRef]
- George, J.; Mani, G.; Alexander Stonier, A. An extensive critique of sliding mode control and adaptive neuro-fuzzy inference system for nonlinear system. Asian J. Control 2022, 24, 2548–2564. [Google Scholar] [CrossRef]
- Fei, J.; Feng, Z. Adaptive fuzzy super-twisting sliding mode control for microgyroscope. Complexity 2019, 2019, 6942642. [Google Scholar] [CrossRef]
- Ding, S.; Park, J.H.; Chen, C.C. Second-order sliding mode controller design with output constraint. Automatica 2020, 112, 108704. [Google Scholar] [CrossRef]
- Fei, J.; Wang, H.; Fang, Y. Novel Neural Network Fractional-Order Sliding-Mode Control With Application to Active Power Filter. IEEE Trans. Syst. Man Cybern.-Syst. 2022, 52, 3508–3518. [Google Scholar] [CrossRef]
- Mien, V.; Mavrovouniotis, M.; Ge, S.S. An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1448–1458. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, L.; Ji, W. Improved Non-Singular Fast Terminal Sliding Mode Control With Disturbance Observer for PMSM Drives. IEEE Trans. Transp. Electrif. 2021, 7, 2753–2762. [Google Scholar] [CrossRef]
- Lee, S.D.; Phuc, B.D.H.; Xu, X.; You, S.S. Roll suppression of marine vessels using adaptive super-twisting sliding mode control synthesis. Ocean Eng. 2020, 195, 106724. [Google Scholar] [CrossRef]
- Lin, C.H.; Ho, C.W.; Hu, G.H.; Sreeramaneni, B.; Yan, J.J. Secure Data Transmission Based on Adaptive Chattering-Free Sliding Mode Synchronization of Unified Chaotic Systems. Mathematics 2021, 9, 2658. [Google Scholar] [CrossRef]
- Mobayen, S.; Vargas, A.N.; Acho, L.; Pujol-Vazquez, G.; Caruntu, C.F. Stabilization of two-dimensional nonlinear systems through barrier-function-based integral sliding-mode control: Application to a magnetic levitation system. Nonlinear Dyn. 2023, 111, 1343–1354. [Google Scholar] [CrossRef]
- Roohi, M.; Mirzajani, S.; Basse-O’Connor, A. A No-Chatter Single-Input Finite-Time PID Sliding Mode Control Technique for Stabilization of a Class of 4D Chaotic Fractional-Order Laser Systems. Mathematics 2023, 11, 4463. [Google Scholar] [CrossRef]
- Yin, X.; She, J.; Wu, M.; Sato, D.; Ohnishi, K. Disturbance rejection using SMC-based-equivalent-input-disturbance approach. Appl. Math. Comput. 2022, 418, 126839. [Google Scholar] [CrossRef]
- Du, Z.; Su, Y.; Yang, W.; Dong, W. Note: A piezo tip/tilt platform: Structure, kinematics, and experiments. Rev. Sci. Instrum. 2014, 85, 046102. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Shao, S.; Zhang, S.; Tian, Z.; Xu, M. Design and modeling of decoupled miniature fast steering mirror with ultrahigh precision. Mech. Syst. Signal Process. 2022, 167, 108521. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Deng, J.; Li, K.; Chang, Q. Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulation. Mech. Syst. Signal Process. 2021, 154, 107602. [Google Scholar] [CrossRef]
- Zhong, J.; Li, L.; Nishida, R.; Shinshi, T. Design and evaluation of a PEA-driven fast steering mirror with a permanent magnet preload force mechanism. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2020, 62, 95–105. [Google Scholar] [CrossRef]
- Ling, J.; Feng, Z.; Zheng, D.; Yang, J.; Yu, H.; Xiao, X. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mech. Syst. Signal Process. 2021, 150, 107235. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
m | 1.3 kg |
b | 30,210 Ns/μm |
k | 25 N/μm |
8 N/V |
Errors | Open-Loop | PID | SMC | |
---|---|---|---|---|
(%) | 0.05 Hz | 1.132 | 0.934 | 0.218 |
0.10 Hz | 1.658 | 1.096 | 0.194 | |
(V) | 0.05 Hz | 0.019 | 0.011 | 0.004 |
0.10 Hz | 0.037 | 0.021 | 0.001 | |
(V) | Hybrid | 0.083 | 0.055 | 0.011 |
Device | Resolution (μrad) | Maximum Rotational Angle (μrad) |
---|---|---|
P562.6CD | 0.1 | 500 |
piezoelectric tip/tilt platform | 0.068 | 2183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Zhang, X.; Nan, F. The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking. Actuators 2024, 13, 269. https://doi.org/10.3390/act13070269
Zeng X, Zhang X, Nan F. The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking. Actuators. 2024; 13(7):269. https://doi.org/10.3390/act13070269
Chicago/Turabian StyleZeng, Xianfeng, Xiaozhi Zhang, and Feng Nan. 2024. "The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking" Actuators 13, no. 7: 269. https://doi.org/10.3390/act13070269
APA StyleZeng, X., Zhang, X., & Nan, F. (2024). The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking. Actuators, 13(7), 269. https://doi.org/10.3390/act13070269