Disturbance Observer and Adaptive Control for Disturbance Rejection of Quadrotor: A Survey
Abstract
:1. Introduction
2. The Nonlinear Dynamic Model of Quadrotors
- Assumption 1: The quadrotor structure is symmetric.
- Assumption 2: The quadrotor is not affected by the Earth’s rotation and revolution.
- Assumption 3: The gravitational acceleration to which the quadrotor is subjected remains constant.
- Assumption 4: The quadrotor performs low-speed, small-angle flight.
- Assumption 5: The disturbances meet , , where and are constants.
3. Disturbance Observers
3.1. Nonlinear Disturbance Observer
3.2. Extended State Observer
4. Adaptive Control Technology
4.1. Neural Network
4.2. Fuzzy Logic System
4.3. Simulation Comparison
5. Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, B.D.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Li, Z.; Liu, H. An air route network planning model of logistics UAV terminal distribution in urban low altitude airspace. Sustainability 2021, 13, 13079. [Google Scholar] [CrossRef]
- Sun, F.; Wang, X.; Zhang, R. Task scheduling system for UAV operations in agricultural plant protection environment. J. Ambient. Intell. Humaniz. Comput. 2020, 1–15. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Fu, H.; Fu, X.; Qi, L. Distribution regularity of downwash airflow under rotors of agricultural UAV for plant protection. Int. J. Agric. Biol. 2021, 14, 46–57. [Google Scholar] [CrossRef]
- Zhu, Y.; Jeon, S.; Sung, H.; Kim, Y.; Park, C.; Cha, S.; Jo, H.; Lee, W. Developing UAV-based forest spatial information and evaluation technology for efficient forest management. Sustainability 2020, 12, 10150. [Google Scholar] [CrossRef]
- Christensen, B. Use of UAV or remotely piloted aircraft and forward-looking infrared in forest, rural and wildland fire management: Evaluation using simple economic analysis. N. Z. J. For. Sci. 2015, 45, 16. [Google Scholar] [CrossRef]
- Obayashi, S.; Kanekiyo, Y.; Uno, H.; Shijo, T.; Sugaki, K.; Kusada, H.; Nakakoji, H.; Hanamaki, Y.; Yokotsu, K. 400-W UAV/drone inductive charging system prototyped for overhead power transmission line patrol. In Proceedings of the 2021 IEEE Wireless Power Transfer Conference, San Diego, CA, USA, 1–4 June 2021; pp. 1–3. [Google Scholar]
- Lin, Y.; LI, B.; Wang, D.; GAO, J. Application of multi-rotor UAV Patrol System in UHV Power Grid Construction. Electr. Power 2017, 50, 141–147. [Google Scholar]
- Bentley, M.J.; Foster, J.M.; Potvin, J.J.; Bevan, G.; Sharp, J.; Woeller, D.J.; Take, W.A. Surface displacement expression of progressive failure in a sensitive clay landslide observed with long-term UAV monitoring. Landslides 2023, 20, 531–546. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Ren, Y.; Zhu, C. UAV photogrammetry and AFSA-Elman neural network in slopes displacement monitoring and forecasting. KSCE J. Civ. Eng. 2020, 24, 19–29. [Google Scholar] [CrossRef]
- Yun, L.; Wei, X.; Wei, W. Application research on aviation remote sensing UAV for disaster monitoring. J. Catastrophology 2011, 26, 138–143. [Google Scholar]
- Joshi, A.; Dhongdi, S.; Dharmadhikari, M.; Mehta, O.; Anupama, K. Enclosing and monitoring of disaster area boundary using multi-UAV network. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 6287–6305. [Google Scholar] [CrossRef]
- Liu, H.; Ge, J.; Wang, Y.; Li, J.; Ding, K.; Zhang, Z.; Guo, Z.; Li, W.; Lan, J. Multi-UAV optimal mission assignment and path planning for disaster rescue using adaptive genetic algorithm and improved artificial bee colony method. Actuators 2021, 11, 4. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Shvetsova, S.V.; Alhartomi, M.A.; Hawbani, A.; Rajput, N.S.; Srivastava, S.; Saif, A.; Nyangaresi, V.O. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones 2022, 6, 154. [Google Scholar] [CrossRef]
- Zhang, H.; Liptrott, M.; Bessis, N.; Cheng, J. Real-time traffic analysis using deep learning techniques and UAV based video. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, Taiwan, 18–21 September 2019; pp. 1–5. [Google Scholar]
- Bisio, I.; Garibotto, C.; Haleem, H.; Lavagetto, F.; Sciarrone, A. Traffic analysis through deep-learning-based image segmentation from UAV streaming. IEEE Internet Things J. 2022, 10, 6059–6073. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Guo, Y.; Jia, L. Discretization—Filtering—Reconstruction: Railway detection in images for navigation of inspection UAV. IEEE Trans. Instrum. Meas. 2022, 71, 3530313. [Google Scholar] [CrossRef]
- Banić, M.; Miltenović, A.; Pavlović, M.; Ćirić, I. Intelligent machine vision based railway infrastructure inspection and monitoring using UAV. Facta Univ. Ser. Mech. Eng. 2019, 17, 357–364. [Google Scholar] [CrossRef]
- Sujit, P.; Saripalli, S.; Sousa, J.B. Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless. IEEE Control. Syst. Mag. 2014, 34, 42–59. [Google Scholar]
- Vargas, A.M.; Gomez, G.R.; Carranza, J.M. Ground effect on rotorcraft unmanned aerial vehicles: A review. Intell. Serv. Robot. 2021, 14, 99–118. [Google Scholar] [CrossRef]
- Chen, F.; Lei, W.; Zhang, K.; Tao, G.; Jiang, B. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 2016, 85, 1281–1295. [Google Scholar] [CrossRef]
- Dalwadi, N.; Deb, D.; Kothari, M.; Ozana, S. Disturbance observer-based backstepping control of tail-sitter UAVs. Actuators 2021, 10, 119. [Google Scholar] [CrossRef]
- Shi, D.; Wu, Z.; Chou, W. Anti-disturbance trajectory tracking of quadrotor vehicles via generalized extended state observer. J. Vib. Control. 2020, 26, 1173–1186. [Google Scholar] [CrossRef]
- Antonelli, G.; Cataldi, E.; Arrichiello, F.; Giordano, P.R.; Chiaverini, S.; Franchi, A. Adaptive trajectory tracking for quadrotor MAVs in presence of parameter uncertainties and external disturbances. IEEE Trans. Control. Syst. Technol. 2017, 26, 248–254. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [Google Scholar] [CrossRef]
- Liu, K.; Yang, P.; Wang, R.; Jiao, L.; Li, T.; Zhang, J. Observer-based adaptive fuzzy finite-time attitude control for quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8637–8654. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, L.; Xia, Y.; Yuan, Y. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans. Control. Syst. Technol. 2017, 26, 1400–1405. [Google Scholar] [CrossRef]
- Zhang, R.; Quan, Q.; Cai, K.Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control. Theory Appl. 2011, 5, 1140–1146. [Google Scholar] [CrossRef]
- Zuo, Z. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control. Theory Appl. 2010, 4, 2343–2355. [Google Scholar] [CrossRef]
- Shao, X.; Liu, J.; Cao, H.; Shen, C.; Wang, H. Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control 2018, 28, 2700–2719. [Google Scholar] [CrossRef]
- Ai, X.; Yu, J. Fixed-time trajectory tracking for a quadrotor with external disturbances: A flatness-based sliding mode control approach. Aerosp. Sci. Technol. 2019, 89, 58–76. [Google Scholar] [CrossRef]
- Chang, K.; Xia, Y.; Huang, K.; Ma, D. Obstacle avoidance and active disturbance rejection control for a quadrotor. Neurocomputing 2016, 190, 60–69. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Q.; Chen, H. A joint guidance and control framework for autonomous obstacle avoidance in quadrotor formations under model uncertainty. Aerosp. Sci. Technol. 2023, 138, 108335. [Google Scholar] [CrossRef]
- Li, B.; Zhang, H.; Niu, Y.; Ran, D.; Xiao, B. Finite-time disturbance observer-based trajectory tracking control for quadrotor unmanned aerial vehicle with obstacle avoidance. Math. Methods Appl. Sci. 2023, 46, 1096–1110. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 2016, 64, 5014–5024. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y. Distributed Robust Formation Tracking Control for Quadrotor UAVs with Unknown Parameters and Uncertain Disturbances. Aerospace 2023, 10, 845. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, J.; Zhang, W.; Zeng, T.; Ye, L. Distributed formation control for multiple quadrotor based on multi-agent theory and disturbance observer. Math. Probl. Eng. 2019, 2019, 7234969. [Google Scholar] [CrossRef]
- Emran, B.J.; Najjaran, H. A review of quadrotor: An underactuated mechanical system. Annu. Rev. Control 2018, 46, 165–180. [Google Scholar] [CrossRef]
- Mo, H.; Farid, G. Nonlinear and adaptive intelligent control techniques for quadrotor UAV: A survey. Asian J. Control 2019, 21, 989–1008. [Google Scholar] [CrossRef]
- Shen, J.; Wang, B.; Chen, B.M.; Bu, R.; Jin, B. Review on wind resistance for quadrotor UAVs: Modeling and controller design. Unmanned Syst. 2023, 11, 5–15. [Google Scholar] [CrossRef]
- Wang, H.; Cui, G.; Li, H. Fixed-time adaptive tracking control for a quadrotor unmanned aerial vehicle with input saturation. Actuators 2023, 12, 130. [Google Scholar] [CrossRef]
- Raffo, G.V.; Ortega, M.G.; Rubio, F.R. An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica 2010, 46, 29–39. [Google Scholar] [CrossRef]
- Guo, K.; Jia, J.; Yu, X.; Guo, L.; Xie, L. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control. Eng. Pract. 2020, 102, 104560. [Google Scholar] [CrossRef]
- Tayebi, A.; McGilvray, S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control. Syst. Technol. 2006, 14, 562–571. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J. Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Frankl. Inst. 2018, 355, 3288–3309. [Google Scholar] [CrossRef]
- Mohammadi, A.; Marquez, H.J.; Tavakoli, M. Nonlinear disturbance observers: Design and applications to Euler-Lagrange systems. IEEE Control. Syst. Mag. 2017, 37, 50–72. [Google Scholar] [CrossRef]
- Guo, L.; Chen, W.H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 2005, 15, 109–125. [Google Scholar] [CrossRef]
- Chen, W. Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 2003, 26, 161–166. [Google Scholar] [CrossRef]
- Kim, K.S.; Rew, K.H.; Kim, S. Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Trans. Autom. Control 2010, 55, 1905–1911. [Google Scholar]
- Fethalla, N.; Saad, M.; Michalska, H.; Ghommam, J. Robust observer-based dynamic sliding mode controller for a quadrotor UAV. IEEE Access 2018, 6, 45846–45859. [Google Scholar] [CrossRef]
- Ahmed, N.; Raza, A.; Shah, S.A.A.; Khan, R. Robust composite-disturbance observer based flight control of quadrotor attitude. J. Intell. Robot. Syst. 2021, 103, 11. [Google Scholar] [CrossRef]
- Wang, B.; Yu, X.; Mu, L.; Zhang, Y. Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances. Mech. Syst. Signal Process. 2019, 120, 727–743. [Google Scholar] [CrossRef]
- Aboudonia, A.; El Badawy, A.; Rashad, R. Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2016, 230, 877–891. [Google Scholar] [CrossRef]
- Ghasemi, A.; Azimi, M.M. Adaptive fuzzy PID control based on nonlinear disturbance observer for quadrotor. J. Vib. Control 2023, 29, 2965–2977. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Yang, X. Adaptive fuzzy control of a quadrotor using disturbance observer. Aerosp. Sci. Technol. 2022, 128, 107784. [Google Scholar] [CrossRef]
- Zhang, N.; Gai, W.; Zhong, M.; Zhang, J. A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance. Aerosp. Sci. Technol. 2019, 86, 204–214. [Google Scholar] [CrossRef]
- Shin, D.; Song, Y.; Oh, J.; Oh, H. Nonlinear disturbance observer-based standoff target tracking for small fixed-wing UAVs. Int. J. Aeronaut. Space Sci. 2021, 22, 108–119. [Google Scholar] [CrossRef]
- Guo, K.; Liu, C.; Zhang, X.; Yu, X.; Guo, L.; Zhang, Y. Disturbance perception based quadrotor UAV maneuvering formation against unknown external disturbance. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems, Athens, Greece, 1–4 September 2020; pp. 117–122. [Google Scholar]
- Chen, W. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 2004, 9, 706–710. [Google Scholar] [CrossRef]
- Huang, D.; Huang, T.; Qin, N.; Li, Y.; Yang, Y. Finite-time control for a UAV system based on finite-time disturbance observer. Aerosp. Sci. Technol. 2022, 129, 107825. [Google Scholar] [CrossRef]
- Li, B.; Hu, Q.; Yang, Y.; Postolache, O.A. Finite-time disturbance observer based integral sliding mode control for attitude stabilisation under actuator failure. IET Control Theory Appl. 2019, 13, 50–58. [Google Scholar] [CrossRef]
- Amrr, S.M.; Nabi, M. Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach. Adv. Space Res. 2020, 66, 1659–1671. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay. Nonlinear Dyn. 2022, 107, 2363–2390. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, F.; Liu, X.; Gu, S.; Geng, H. Fixed-time dynamic surface control for pneumatic manipulator system with unknown disturbances. IEEE Robot. Autom. Lett. 2022, 7, 10890–10897. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, X.; Yao, W. Fixed-time trajectory tracking control of a quadrotor UAV under time-varying wind disturbances: Theory and experimental validation. Meas. Sci. Technol. 2024, 35, 086205. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, L.; Jiang, B.; Cao, D. Fast nonsingular terminal sliding mode trajectory tracking control of a quadrotor UAV based on extended state observers. Control Decis. 2022, 37, 2201–2210. [Google Scholar]
- Ma, D.; Xia, Y.; Li, T.; Chang, K. Active disturbance rejection and predictive control strategy for a quadrotor helicopter. IET Control Theory Appl. 2016, 10, 2213–2222. [Google Scholar] [CrossRef]
- Xiong, J.; Pan, J.; Chen, G.; Zhang, X.; Ding, F. Sliding mode dual-channel disturbance rejection attitude control for a quadrotor. IEEE Trans. Ind. Electron. 2021, 69, 10489–10499. [Google Scholar] [CrossRef]
- Du, Y.; Huang, P.; Cheng, Y.; Fan, Y.; Yuan, Y. Fault tolerant control of a quadrotor unmanned aerial vehicle based on active disturbance rejection control and two-stage Kalman filter. IEEE Access 2023, 11, 67556–67566. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Q.; Nemati, H.; Yue, X.; Narayan, P. Trajectory tracking of a quadrotor using extend state observer based U-model enhanced double sliding mode control. J. Frankl. Inst. 2023, 360, 3520–3544. [Google Scholar] [CrossRef]
- Hua, C.; Wang, K.; Chen, J.; You, X. Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. 2018, 94, 343–354. [Google Scholar] [CrossRef]
- Shen, H.; Du, J.; Yan, K.; Liu, Y.; Chen, J. VGESO-Based Finite-Time Fault-Tolerant Tracking Control for Quadrotor Unmanned Aerial Vehicle. Int. J. Aerosp. Eng. 2024, 2024, 2541698. [Google Scholar] [CrossRef]
- Song, J.; Shang, W.; Ai, S.; Zhao, K. Model and data-driven combination: A fault diagnosis and localization method for unknown fault size of quadrotor UAV actuator based on extended state observer and deep forest. Sensors 2022, 22, 7355. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Ning, J.; Li, Z. Formation Control for UAV-USVs Heterogeneous System with Collision Avoidance Performance. J. Mar. Sci. Eng. 2023, 11, 2332. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Su, Z.; Shao, X. UAV broken-line path following under disturbance conditions. J. Aerosp. Eng. 2018, 31, 04018089. [Google Scholar] [CrossRef]
- Han, X.; Tomita, K.; Kamimura, A. Reduced-Order Active Disturbance Rejection Control Scheme for a Quadrotor and Its Autotuning Method. In Proceedings of the 2022 61st Annual Conference of the Society of Instrument and Control Engineers, Kumamoto, Japan, 6–9 September 2022; pp. 1151–1157. [Google Scholar]
- Li, S.; Yang, J.; Chen, W.; Chen, X. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Ind. Electron. 2011, 59, 4792–4802. [Google Scholar] [CrossRef]
- Escareño, J.; Salazar, S.; Romero, H.; Lozano, R. Trajectory control of a quadrotor subject to 2D wind disturbances: Robust-adaptive approach. J. Intell. Robot. Syst. 2013, 70, 51–63. [Google Scholar] [CrossRef]
- Dierks, T.; Jagannathan, S. Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 2009, 21, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; He, T.; Wu, X.; Wang, H.; Chi, J. Robust adaptive neural network-based compensation control of a class of quadrotor aircrafts. J. Frankl. Inst. 2020, 357, 12241–12263. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Z.; Zhang, Z.; Hu, X. Sliding mode fault tolerant control for a quadrotor with varying load and actuator fault. Actuators 2021, 10, 323. [Google Scholar] [CrossRef]
- Mohd Basri, M.A. Trajectory tracking control of autonomous quadrotor helicopter using robust neural adaptive backstepping approach. J. Aerosp. Eng. 2018, 31, 04017091. [Google Scholar] [CrossRef]
- Liu, H.; Tu, H.; Huang, S.; Zheng, X. Adaptive predefined-time sliding mode control for quadrotor formation with obstacle and inter-quadrotor avoidance. Sensors 2023, 23, 2392. [Google Scholar] [CrossRef]
- Bisheban, M.; Lee, T. Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Trans. Control Syst. Technol. 2020, 29, 1533–1548. [Google Scholar] [CrossRef]
- Yogi, S.C.; Tripathi, V.K.; Behera, L. Adaptive integral sliding mode control using fully connected recurrent neural network for position and attitude control of quadrotor. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5595–5609. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Shen, J.; Zhang, Z. Practical fixed-time tracking control of quadrotor unmanned aerial vehicles with input saturation. Asian J. Control 2024. [Google Scholar] [CrossRef]
- Yu, D.; Ma, S.; Liu, Y.J.; Wang, Z.; Chen, C.P. Finite-time adaptive fuzzy backstepping control for quadrotor UAV with stochastic disturbance. IEEE Trans. Autom. Sci. Eng. 2023, 21, 1335–1345. [Google Scholar] [CrossRef]
- Hu, C.; Cao, L.; Zhou, X.; Sun, B.; Wang, N. Fuzzy adaptive nonlinear sensor-fault tolerant control for a quadrotor unmanned aerial vehicle. Asian J. Control 2020, 22, 1163–1176. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Dou, J.; Wen, B. A fuzzy adaptive backstepping control based on mass observer for trajectory tracking of a quadrotor UAV. Int. J. Adapt. Control Signal Process. 2018, 32, 1675–1693. [Google Scholar] [CrossRef]
- Mallavalli, S.; Fekih, A. A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator faults and exogenous disturbances. Int. J. Control 2020, 93, 655–668. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Liu, Y. Neural-network-based robust terminal sliding-mode control of quadrotor. Asian J. Control 2022, 24, 427–438. [Google Scholar] [CrossRef]
Estimation Methods | Advantage | Disadvantage |
---|---|---|
NDO | Capable of handling complex perturbations in nonlinear systems. Simple structural design, easy-to-adjust parameters. | Unknown convergence time. |
Finite-time NDO | Converges within a finite time. Quick response to disturbance changes. Ideal for systems requiring rapid response. | The convergence time depends on the initial conditions and system parameters. Sensitive to parameter selection. |
Fixed-time NDO | Converges within a fixed time regardless of initial conditions. Ideal for applications with strict time requirements. | Complex design. Requires high computational resources. |
Estimation Methods | Advantage | Disadvantage |
---|---|---|
Reduced-order ESO | Simpler to design and implement. Less computationally burdensome, suitable for resource-constrained systems. Used only for disturbance estimation. | Only disturbances can be estimated, not other states of the system. |
Second-order ESO | Ability to estimate the speed and disturbances of the system for a wide range of applications. Relatively simple design and moderate computational burden. | Cannot estimate the position of the system and may not be comprehensive enough for some application scenarios. More sensitive to the choice of observer parameters. |
Third-order ESO | Ability to simultaneously estimate the position, velocity, and disturbance of the system, providing comprehensive state information. | More complex to design and implement. Heavier computational burden. Parameter adjustment is difficult. |
Estimation Methods | Advantage | Disadvantage |
---|---|---|
Adaptive estimation | Direct estimation of disturbances with a simple design and implementation process. | Performance degrades in complex or noisy environments, requiring further filtering or enhancements. |
NN | Fast learning speed, no need for complex training process, usually by adjusting the weights online to adapt to changes. Good approximation ability and generalization ability, can effectively approximate nonlinear functions and perturbations. | Requires selection of appropriate radial basis functions and network structure, poor selection may affect performance. More sensitive to the choice of scale and center of the input data.Higher computational volume. |
FLS | Can handle ambiguity and uncertainty in the system and is suitable for non-precise or fuzzy information processing. The rule base can be interpreted and adjusted with high interpretability and flexibility. | Designing the rule base and the affiliation function is more complex and requires a lot of experiments and adjustments.The amount of computation is large. Expert knowledge is needed to design effective fuzzy rules and affiliation functions. |
Estimation Methods | Advantage | Disadvantage |
---|---|---|
NDO | Can effectively estimate various disturbances. Simple structure and easy to implement. | Requires accurate system model. The accuracy of model parameters is required to be high, and parameter errors may lead to degradation of estimation performance. |
ESO | Can estimate external perturbations as well as the internal state of the system. Applicable to all types of systems and types of perturbations. | For higher-order systems, design and tuning of parameters may be more complex. Accurate system modeling is required. |
Adaptive estimation | Adaptable to environmental changes and parameter variations, suitable for dynamically changing system environments. Does not require an accurate model of the system. | Algorithms are complex and require more computational resources. Disturbance estimation is imprecise and dependent on control parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Shen, J. Disturbance Observer and Adaptive Control for Disturbance Rejection of Quadrotor: A Survey. Actuators 2024, 13, 217. https://doi.org/10.3390/act13060217
Wang R, Shen J. Disturbance Observer and Adaptive Control for Disturbance Rejection of Quadrotor: A Survey. Actuators. 2024; 13(6):217. https://doi.org/10.3390/act13060217
Chicago/Turabian StyleWang, Ruiying, and Jun Shen. 2024. "Disturbance Observer and Adaptive Control for Disturbance Rejection of Quadrotor: A Survey" Actuators 13, no. 6: 217. https://doi.org/10.3390/act13060217
APA StyleWang, R., & Shen, J. (2024). Disturbance Observer and Adaptive Control for Disturbance Rejection of Quadrotor: A Survey. Actuators, 13(6), 217. https://doi.org/10.3390/act13060217