Design and Analysis of Variable-Stiffness Fast-Steering Mirror
Abstract
:1. Introduction
- 1.
- The torque model is established for the variable-stiffness mechanism based on the spring component, and the influence of the structure dimensions on the torque is analyzed;
- 2.
- It is proposed to use the third-order Taylor series expansion to fit the dimensionless torque to simplify the torque model parameters;
- 3.
- The influence of the nonlinearity of the variable-stiffness model on the frequency characteristics is analyzed by solving the nonlinear dynamic equation;
- 4.
- For the small-range rotating mechanism, experiments are designed to verify the changes in the variable-stiffness and resonant-frequency characteristics of the FSM.
2. Theoretical Analysis of the Variable-Stiffness Mechanism
2.1. The Mechanism Operating Principle
2.2. Analysis of the Mechanism Structural Dimensions
2.3. Nonlinear Analysis of the Mechanism
3. Experimental Verification
3.1. FSM with Variable Stiffness Experiment
3.2. FSM Variable Load Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlarp, J.; Csencsics, E.; Schitter, G. Optical scanning of a laser triangulation sensor for 3-D imaging. IEEE Trans. Instrum. Meas. 2019, 69, 3606–3613. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, A.; Dai, Y.; Xue, J. Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes. Appl. Opt. 2018, 57, 9307–9315. [Google Scholar] [CrossRef] [PubMed]
- Sinn, A.; Riel, T.; Deisl, F.; Schachner, S.; Schitter, G. High-bandwidth tip-tilt vibration compensation in telescope systems. IFAC-PapersOnLine 2019, 52, 549–554. [Google Scholar] [CrossRef]
- Deng, J.; Xue, W.; Liang, W.; Zhou, X.; Mao, Y. On adjustable and lossless suppression to disturbances and uncertainties for nonminimum-phase laser pointing system. ISA Trans. 2023, 136, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Nishida, R.; Shinshi, T. Design and precision tracking control of a high-bandwidth fast steering mirror for laser beam machining. Precis. Eng. 2022, 73, 128–139. [Google Scholar] [CrossRef]
- Cao, K.; Hao, G.; Liu, Q.; Tan, L.; Ma, J. Hysteresis modeling and compensation of fast steering mirrors with hysteresis operator based back propagation neural networks. Micromachines 2021, 12, 732. [Google Scholar] [CrossRef]
- Hao, G.; Li, H.; Chang, Y.-H.; Liu, C.-S. Design of Four-DoF Compliant Parallel Manipulators Considering Maximum Kinematic Decoupling for Fast Steering Mirrors. Actuators 2021, 10, 292. [Google Scholar] [CrossRef]
- Liu, C.-S.; Wu, Y.-C.; Lan, Y.-J. Design of 4-DOF Voice Coil Motor with Function of Reducing Laser Geometrical Fluctuations. Actuators 2021, 10, 320. [Google Scholar] [CrossRef]
- Zhao, T.; Tong, W.; Mao, Y. Hybrid Nonsingleton Fuzzy Strong Tracking Kalman Filtering for High Precision Photoelectric Tracking System. IEEE Trans. Ind. Inform. 2022, 19, 2395–2408. [Google Scholar] [CrossRef]
- Fu, J.; Yan, C.; Liu, W.; Yuan, T. Stiffness optimization of two-axis flexible supporting platform for fast steering mirror. Opt. Precis. Eng. 2015, 23, 3378–3386. (In Chinese) [Google Scholar]
- Zhang, W.; Yuan, J.; Yan, C.; Gao, Z.; Dong, Y. Multi-objective optimization design of natural frequency of two-degree-of-freedom fast steering mirror system. IEEE Access 2021, 9, 33689–33703. [Google Scholar] [CrossRef]
- Han, W.; Shao, S.; Zhang, S.; Tian, Z.; Xu, M. Design and modeling of decoupled miniature fast steering mirror with ultrahigh precision. Mech. Syst. Signal Process. 2022, 167, 108521. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Xue, Y.; Jiang, J.; Zhang, Q.; Yue, H. A Variable Stiffness Actuator Based on Leaf Springs: Design, Model and Analysis. Actuators 2022, 11, 282. [Google Scholar] [CrossRef]
- Jin, H.; Luo, M.; Lu, S.; He, Q.; Lin, Y. Design and Analysis of a Novel Variable Stiffness Joint for Robot. Actuators 2023, 12, 10. [Google Scholar] [CrossRef]
- Van, R.; Sugar, T.; Vanderborght, B.; Hollander, K.; Lefeber, D. Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot. & Autom. Mag. 2009, 16, 81–94. [Google Scholar] [CrossRef]
- Hollander, K.W.; Ilg, R.; Sugar, T.G.; Herring, D. An Efficient Robotic Tendon for Gait Assistance. ASME J. Biomech. Eng. 2006, 128, 788–791. [Google Scholar] [CrossRef]
- Migliore, S.A.; Brown, E.A.; DeWeerth, S.P. Biologically inspired joint stiffness control. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 4508–4513. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Lin, W. Design of a structure-controlled variable stiffness actuator based on rotary flexure hinges. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; p. 7988689. [Google Scholar] [CrossRef]
- Karnopp, D. Active and SemiActive Vibration Isolation. J. Mech. Des. 1995, 117, 409–423. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, C. Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic dampin. Nonlinear Dyn. 2022, 103, 2153–2175. [Google Scholar] [CrossRef]
- Le, T.D.; Ahn, K.K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 2011, 330, 6311–6355. [Google Scholar] [CrossRef]
- Lee, C.M.; Bogatchenkov, A.H.; Goverdovskiy, V.N.; Shynkarenko, Y.V.; Temnikov, A.I. Position control of seat suspension with minimum stiffnes. J. Sound Vib. 2006, 292, 435–442. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, C. The effect of various damping on the isolation performance of quasi-zero-stiffness system. Mech. Syst. Signal Process. 2022, 171, 108944. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Zhang, L. Bifurcation analysis of a micro-machined gyroscope with nonlinear stiffness and electrostatic forces. Micromachines 2021, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, K.; Li, J.; Li, Y. A novel rotational actuator with variable stiffness using S-shaped springs. IEEE/ASME Trans. Mechatronics 2020, 26, 2249–2260. [Google Scholar] [CrossRef]
- Govindan, N.; Ramesh, S.; Thondiyath, A. Design of a variable stiffness joint module to quickly change the stiffness and to reduce the power consumption. IEEE Access 2020, 8, 138318–138330. [Google Scholar] [CrossRef]
Different Variable-Stiffness Mechanisms | Minimum Number of Springs | Can Linear Springs Be Used | Can the Equilibrium Position Be Changed | Preload in the Equilibrium Position | Can Negative Stiffness Be Achieved |
---|---|---|---|---|---|
Ours | 2 | Yes | Yes | Yes | Yes |
Research in [13] | 3 | No | No | No | No |
Research in [16] | 1 | Yes | No | No | No |
Research in [17] | 2 | Yes | Yes | Yes | No |
Research in [18] | 4 | No | No | No | No |
Research in [25] | 4 | No | No | No | No |
Research in [26] | 2 | Yes | No | Yes | No |
b (mm) | Experimental Value of k (Nm/rad) | Theoretical Value of k (Nm/rad) | Stiffness Error (Nm/rad) | Experimental Error | Average Experimental Stiffness (Nm/rad) | Average Error |
---|---|---|---|---|---|---|
22 | 2.1 | 1.97 | +0.13 | +6.6% | 4.9 | +5.72% |
26 | 3.6 | 3.30 | +0.30 | +9.1% | ||
32 | 5.4 | 4.98 | +0.42 | +8.4% | ||
36 | 6.1 | 5.92 | +0.18 | +3.0% | ||
42 | 7.3 | 7.19 | +0.11 | +1.5% |
b (mm) | Experimental Value of k (Nm/rad) | Theoretical Value of k (Nm/rad) | Stiffness Error (Nm/rad) | Experimental Error | Average Experimental Stiffness (Nm/rad) | Average Error |
---|---|---|---|---|---|---|
22 | 5.6 | 5.02 | +0.58 | +11.6% | 10.6 | +7.57% |
26 | 10.5 | 9.70 | +0.80 | +8.2% | ||
32 | 15.8 | 15.36 | +0.44 | +2.9% |
b (mm) | Experimental Value of k (Nm/rad) | Theoretical Value of k (Nm/rad) | Stiffness Error (Nm/rad) | Experimental Error | Average Experimental Stiffness (Nm/rad) | Average Error |
---|---|---|---|---|---|---|
22 | 5.2 | 4.92 | +0.28 | +5.7% | 8.07 | +6.57% |
26 | 8.3 | 7.34 | +0.96 | +13.1% | ||
32 | 10.7 | 10.60 | +0.10 | +0.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Mao, Y.; Dai, W.; Yang, F.; Zhang, L.; Miao, L. Design and Analysis of Variable-Stiffness Fast-Steering Mirror. Actuators 2024, 13, 5. https://doi.org/10.3390/act13010005
Luo J, Mao Y, Dai W, Yang F, Zhang L, Miao L. Design and Analysis of Variable-Stiffness Fast-Steering Mirror. Actuators. 2024; 13(1):5. https://doi.org/10.3390/act13010005
Chicago/Turabian StyleLuo, Jin, Yao Mao, Wang Dai, Feixiang Yang, Luyao Zhang, and Li Miao. 2024. "Design and Analysis of Variable-Stiffness Fast-Steering Mirror" Actuators 13, no. 1: 5. https://doi.org/10.3390/act13010005
APA StyleLuo, J., Mao, Y., Dai, W., Yang, F., Zhang, L., & Miao, L. (2024). Design and Analysis of Variable-Stiffness Fast-Steering Mirror. Actuators, 13(1), 5. https://doi.org/10.3390/act13010005