Dielectric Elastomer Sensors with Advanced Designs and Their Applications
Abstract
1. Introduction
2. Advanced Sensor Designs
2.1. Advanced Pressure Sensors
2.2. Advanced Strain Sensors
2.3. Simulation of Advanced Sensors
3. Applications of Advanced Dielectric Elastomer Sensors
3.1. Sensor Applications
- -
- Pressure sensors with an elevated pressure range for bridge mounts, engine mounts and other elastomer dampers;
- -
- Strain sensors with an enhanced measuring sensitivity for structural health monitoring of civil infrastructure such as bridges, large buildings as well as industrial facilities;
- -
- Out-of-plane strain sensors for recording the filling level of liquid-containing systems such as tanks, containers, washing machines, dishwashers, etc.
3.2. Human–Machine Interfaces
- -
- Two strain sensors on the backside of the index finger and the middle finger;
- -
- A pressure sensor on the thumb;
- -
- Several contact sensors, which consist of two electrodes located on different fingers.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpi, F.; De Rossi, D.; Kornbluh, R.; Pelrine, R.; Sommer-Larsen, P. (Eds.) Dielectric Elastomers as Electromechanical Transducers; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Romasanta, L.J.; Lopez-Manchado, M.A.; Verdejo, A. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Prog. Polym. Sci. 2015, 51, 188–211. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; McCoul, D.; Pei, Q.; Chen, H. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage. Appl. Phys. Lett. 2014, 105, 212904. [Google Scholar] [CrossRef]
- Madsen, F.B.; Daugaard, A.E.; Hvilsted, S.; Skov, A.L. The Current State of Silicone-Based Dielectric Elastomer Transducers. Macromol. Rapid Commun. 2016, 37, 378–413. [Google Scholar] [CrossRef] [PubMed]
- Böse, H.; Uhl, D.; Flittner, K.; Schlaak, H. Dielectric Elastomer Actuator with Enhanced Permittivity and Strain. Proc. SPIE 2011, 7976, 734–746. [Google Scholar]
- Kussmaul, B.; Risse, S.; Kofod, G.; Waché, R.; Wegener, M.; McCarthy, D.N.; Krüger, H.; Gerhard, R. Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: Molecular grafting of organic dipoles to the macromolecular network. Adv. Funct. Mater. 2011, 21, 4589–4594. [Google Scholar] [CrossRef]
- Böse, H.; Uhl, D.; Rabindranath, R. Novel DEA with organically modified silicone elastomer for permittivity enhancement. Proc. SPIE 2012, 8340, 538–547. [Google Scholar]
- Sheima, Y.; von Szczepanski, J.; Danner, P.; Owusu, F.; Iacob, M.; Perju, E.; Nüesch, F.; Opris, D.M. High dielectric permittivity elastomers: Synthesis, processability, and device manufacturing. Proc. SPIE 2022, XXIV, PC120420Q. [Google Scholar]
- Shigemune, H.; Sugano, S.; Nishitani, J.; Yamauchi, M.; Hosoya, N.; Hashimoto, S.; Maeda, S. Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush. Actuators 2018, 7, 51. [Google Scholar] [CrossRef]
- Böse, H.; Uhl, D. Dielectric elastomers with novel highly-conducting electrodes. Proc. SPIE 2013, 8687, 720–731. [Google Scholar]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-speed electrically actuated elastomers with over 100% strain. Science 2000, 287, 836–839. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Joseph, J.; Heydt, R.; Pei, Q.; Chiba, S. High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 2000, 11, 89–100. [Google Scholar] [CrossRef]
- O’Halloran, A.; O’Malley, F.; McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 2008, 104, 071101. [Google Scholar] [CrossRef]
- Kovacs, G.; Düring, L.; Michel, S.; Terrasi, G. Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A 2009, 155, 299–307. [Google Scholar] [CrossRef]
- Kofod, G. The static actuation of dielectric elastomer actuators: How does pre-stretch improve actuation? J. Phys. D Appl. Phys. 2008, 41, 215405. [Google Scholar] [CrossRef]
- Bruch, D.; Willian, T.P.; Schäfer, H.C.; Motzki, P. Performance-Optimized Dielectric Elastomer Actuator System with Scalable Scissor Linkage Transmission. Actuators 2022, 11, 160. [Google Scholar] [CrossRef]
- Flittner, K.; Schlosser, M.; Schlaak, H.F. Dielectric elastomer stack actuators for integrated gas valves. Proc. SPIE 2011, 7976, 443–449. [Google Scholar]
- Giousouf, M.; Kovacs, G. Dielectric elastomer actuators used for pneumatic valve technology. Smart Mater. Struct. 2013, 22, 104010. [Google Scholar] [CrossRef]
- Linnebach, P.; Rizzello, G.; Seelecke, S. Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump. Smart Mater. Struct. 2020, 29, 075021. [Google Scholar] [CrossRef]
- Heydt, R.P.; Kornbluh, R.; Eckerle, J.; Pelrine, R. Dielectric Elastomer Loudspeakers, [Dielectric Elastomers as Electromechanical Transducers]; Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 313–320. [Google Scholar]
- Carpi, F.; Frediani, G.; Turco, S.; De Rossi, D. Bioinspired Tunable Lens with Muscle-Like Electroactive Elastomers. Adv. Funct. Mater. 2011, 21, 4152–4158. [Google Scholar] [CrossRef]
- Shian, S.; Diebold, R.M.; Clarke, D.R. Tunable lenses using transparent dielectric elastomer actuators. Opt. Express 2013, 21, 8669–8676. [Google Scholar] [CrossRef]
- Giger, J.; Blum, M.; Aschwanden, M. Laser speckle reduction based on electroactive polymers. In Proceedings of the 1st Advanced Laser and Photon Sources (ALPS’12), Yokohama, Japan, 26–27 April 2012. [Google Scholar]
- Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 2016, 28, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, L.; Liu, Y.; Leng, J. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Matysek, M.; Lotz, P.; Schlaak, H.F. Braille display with dielectric polymer actuator. In Proceedings of the 10th International Conference on New Actuators, Bremen, Germany, 14–16 June 2006; pp. 997–1000. [Google Scholar]
- Di, K.; Bao, K.; Chen, H.; Xie, X.; Tan, J.; Shao, X.; Li, Y.; Xia, W.; Xu, Z.; E, S. Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review. Sustainability 2021, 13, 9881. [Google Scholar] [CrossRef]
- Koh, A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. Dielectric elastomer generators: How much energy can be converted? IEEE/ASME Trans. Mechatron. 2011, 16, 33–41. [Google Scholar] [CrossRef]
- Chiba, S.; Waki, M.; Kornbluh, R.; Pelrine, R. Current status and future prospects of power generators using dielectric elastomers. Smart Mater. Struct. 2011, 20, 124006. [Google Scholar] [CrossRef]
- McKay, T.G.; Rosset, S.; Anderson, I.A.; Shea, H. Dielectric elastomer generators that stack up. Smart Mater. Struct. 2015, 24, 015014. [Google Scholar] [CrossRef]
- Vertechy, R.; Montana, M.; Rosati Papini, G.P.; Forehand, D. In-tank tests of a dielectric elastomer generator for wave energy harvesting. Proc. SPIE 2014, 9056, 332–342. [Google Scholar]
- Kornbluh, R.; Pelrine, R.; Prahlad, H.; Wong-Foy, A.; McCoy, B.; Kim, S.; Eckerly, J.; Low, T. From boots to buoys: Promises and challenges of dielectric elastomer energy harvesting. Proc. SPIE 2011, 7976, 67–93. [Google Scholar]
- Son, S.; Goulbourne, N.C. Finite Deformations of Tubular Dielectric Elastomer Sensors. J. Intell. Mat. Syst. Struct. 2009, 20, 2187–2199. [Google Scholar] [CrossRef]
- Xu, D.; McKay, T.G.; Michel, S.; Anderson, I.A. Enabling large scale capacitive sensing for dielectric elastomers. Proc. SPIE 2014, 9056, 269–276. [Google Scholar]
- Rosenthal, M.; Bonwit, N.; Duncheon, C.; Heim, J. Applications of dielectric elastomer EPAM sensors. Proc. SPIE 2007, 6524, 410–416. [Google Scholar]
- Ni, N.; Zhang, L. Dielectric Elastomer Sensors; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Bae, J.-H.; Chang, S.-H. PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: A review. Funct. Compos. Struct. 2019, 1, 012003. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, L.-J.; Zhong, S.-L.; Zha, J.-W.; Dang, Z.-M. Review of dielectric elastomers for actuators, generators and sensors. IET Nanodielectr. 2020, 3, 99–106. [Google Scholar] [CrossRef]
- Rizzello, G. A Review of Cooperative Actuator and Sensor Systems Based on Dielectric Elastomer Transducers. Actuators 2023, 12, 46. [Google Scholar] [CrossRef]
- Hoffstadt, T.; Griese, M.; Maas, J. Identification of the mechanical state of DEAP transducers based on integrated DEAP sensors. Proc. SPIE 2014, 9056, 277–288. [Google Scholar]
- Gisby, T.A.; O’Brien, B.M.; Anderson, I.A. Self sensing feedback for dielectric elastomer actuators. Appl. Phys. Lett. 2013, 102, 193703. [Google Scholar] [CrossRef]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback. Smart Mater. Struct. 2016, 25, 035034. [Google Scholar] [CrossRef]
- Jung, K.; Kim, K.J.; Choi, H.R. A self-sensing dielectric elastomer actuator. Sens. Actuators A 2008, 143, 343–351. [Google Scholar] [CrossRef]
- Rosset, S.; O’Brien, B.M.; Gisby, T.; Xu, D.; Shea, H.R.; Anderson, I.A. Self-sensing dielectric elastomer actuators in closed-loop operation. Smart Mater. Struct. 2013, 22, 104018. [Google Scholar] [CrossRef]
- Chuc, N.H.; Thuy, D.V.; Park, J.; Kim, D.; Koo, J.; Lee, Y.; Nam, J.D.; Choi, H.R. A dielectric elastomer actuator with self-sensing capability. Proc. SPIE 2008, 6927, 260–267. [Google Scholar]
- Matysek, M.; Haus, H.; Moessinger, H.; Brokken, D.; Lotz, P.; Schlaak, H.F. Combined Driving and Sensing Circuitry for Dielectric Elastomer Actuators in mobile applications. Proc. SPIE 2011, 7976, 314–324. [Google Scholar]
- Gisby, T.; Xie, S.; Calius, E.; Anderson, I. Integrated sensing and actuation of muscle-like actuators. Proc. SPIE 2009, 7287, 72–83. [Google Scholar]
- Ye, Z.; Chen, Z. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network. Smart Mater. Struct. 2017, 26, 095056. [Google Scholar] [CrossRef]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. A Self-Sensing Approach for Dielectric Elastomer Actuators Based on Online Estimation Algorithms. IEEE/ASME Trans. Mechatron. 2017, 22, 728–738. [Google Scholar] [CrossRef]
- Rizzello, G.; Fugaro, F.; Naso, D.; Seelecke, S. Simultaneous Self-Sensing of Displacement and Force for Soft Dielectric Elastomer Actuators. IEEE Robot. Autom. Lett. 2018, 3, 1230–1236. [Google Scholar] [CrossRef]
- Rizzello, G.; Serafino, P.; Naso, D.; Seelecke, S. Towards Sensorless Soft Robotics: Self-Sensing Stiffness Control of Dielectric Elastomer Actuators. IEEE Trans. Robot. 2020, 36, 174–188. [Google Scholar] [CrossRef]
- Zhang, R.; Iravani, P.; Keogh, P. Closed loop control of force operation in a novel self-sensing dielectric elastomer actuator. Sens. Actuators A 2017, 264, 123–132. [Google Scholar] [CrossRef]
- Fasolt, B.; Hodgins, M.; Rizzello, G.; Seelecke, S. Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes. Sens. Actuators A 2017, 265, 10–19. [Google Scholar] [CrossRef]
- Araromi, O.A.; Rosset, S.; Shea, H.R. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 2015, 7, 18046–18053. [Google Scholar] [CrossRef]
- Xu, D.; Gisby, T.A.; Xie, S.; Anderson, I.A. Scalable sensing electronics towards a motion capture suit. Proc. SPIE 2013, 8687, 697–703. [Google Scholar]
- O’Brien, B.; Gisby, T.; Anderson, I.A. Stretch sensors for human body motion. Proc. SPIE 2014, 9056, 254–262. [Google Scholar]
- Huang, B.; Li, M.; Mei, T.; McCoul, D.; Qin, S.; Zhao, Z.; Zhao, J. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers. Sensors 2017, 17, 2708. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Anderson, I. Monitoring diver kinematics with dielectric elastomer sensors. Proc. SPIE 2017, 10163, 11–21. [Google Scholar]
- Walker, C.; Anderson, I. From land to water: Bringing dielectric elastomer sensing to the underwater realm. Proc. SPIE 2016, 9798, 443–450. [Google Scholar]
- Larson, C.; Spjut, J.; Knepper, R.; Shepherd, R. A Deformable Interface for Human Touch Recognition using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robot. 2019, 6, 611–620. [Google Scholar] [CrossRef]
- Xu, D.; Tairych, A.; Anderson, I.A. Where the Rubber Meets the Hand: Unlocking the Sensing Potential of Dielectric Elastomers. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 465–472. [Google Scholar] [CrossRef]
- Available online: http://www.stretchsense.com (accessed on 7 March 2023).
- Available online: https://leaptechnology.com (accessed on 7 March 2023).
- Available online: https://promo.parker.com/promotionsite/flexsense/us/en/home (accessed on 7 March 2023).
- Orbaugh Antillon, D.W.; Walker, C.; Rosset, S.; Anderson, I.A. The challenges of hand gesture recognition using dielectric elastomer sensors. Proc. SPIE 2020, 11375, 231–241. [Google Scholar]
- Orbaugh, D.; Walker, C.; Rosset, S.; Anderson, I. Jumping into virtual reality with dielectric elastomer sensors. Proc. SPIE 2021, 11587, 17–31. [Google Scholar]
- Loew, P.; Rizzello, G.; Seelecke, S. Pressure monitoring inside a polymer tube based on a dielectric elastomer membrane sensor. Proc. SPIE 2018, 10594, 324–331. [Google Scholar]
- Laflamme, S.; Kollosche, M.; Connor, J.J.; Kofod, G. Soft capacitive sensor for structural health monitoring of large-scale systems. Struct. Control Health Monit. 2012, 19, 70–81. [Google Scholar] [CrossRef]
- Yan, J.; Downey, A.; Cancelli, A.; Laflamme, S.; Chen, A.; Li, J.; Ubertini, F. Concrete Crack Detection and Monitoring Using a Capacitive Dense Sensor Array. Sensors 2019, 19, 1843. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Goulbourne, N.C. Dynamic response of tubular dielectric elastomer transducers. Int. J. Solids Struct. 2010, 47, 2672–2679. [Google Scholar] [CrossRef]
- Wang, S.; Kaaya, T.; Chen, Z. Self-sensing of dielectric elastomer tubular actuator with feedback control validation. Smart Mater. Struct. 2020, 29, 075037. [Google Scholar] [CrossRef]
- Goulbourne, N.; Son, S.; Fox, J. Self-sensing McKibben actuators using dielectric elastomer sensors. Proc. SPIE 2007, 6524, 295–306. [Google Scholar]
- Kanno, R.; Watanabe, S.; Shimizu, K.; Shintake, J. Self-Sensing McKibben Artificial Muscles Embedded with Dielectric Elastomer Sensor. IEEE Robot. Autom. Lett. 2021, 6, 6274–6280. [Google Scholar] [CrossRef]
- Kofod, G.; Stoyanov, H.; Gerhard, R. Multilayer coaxial fiber dielectric elastomers for actuation and sensing. Appl. Phys. A 2011, 102, 577–581. [Google Scholar] [CrossRef]
- Girard, A.; Bigúe, J.-P.L.; O’Brien, B.M.; Gisby, T.A.; Anderson, I.A.; Plante, J.-S. Soft Two-Degree-of-Freedom Dielectric Elastomer Position Sensor Exhibiting Linear Behavior. IEEE/ASME Trans. Mechatron. 2015, 20, 105–114. [Google Scholar] [CrossRef]
- Kim, D.; Lee, C.H.; Kim, B.C.; Lee, D.H.; Lee, H.S.; Nguyen, C.T.; Kim, U.K.; Nguyen, T.D.; Moon, H.; Koo, J.C.; et al. Six-axis capacitive force/torque sensor based on dielectric elastomer. Proc. SPIE 2013, 8687, 688–696. [Google Scholar]
- Hu, X.; Yang, F.; Wu, M.; Sui, Y.; Guo, D.; Li, M.; Kang, Z.; Sun, J.; Liu, J. A Super-Stretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Adv. Mater. Technol. 2021, 7, 2100769. [Google Scholar] [CrossRef]
- Deng, C. High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 2020, 8, 5541. [Google Scholar] [CrossRef]
- Dong, T.; Gu, Y.; Liu, T.; Pecht, M. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. Sens. Actuators A Phys. 2021, 326, 112720. [Google Scholar] [CrossRef]
- Tao, Y.-D.; Gu, G.-Y.; Zhu, L.-M. Design and performance testing of a dielectric elastomer strain sensor. Int. J. Intell. Robot Appl. 2017, 1, 451–458. [Google Scholar] [CrossRef]
- Shintake, J.; Nagai, T.; Ogishima, K. Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Front. Robot. AI 2019, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Laflamme, S.; Li, J.; Bennett, C.; Collins, W.; Downey, A.; Jo, H. Experimental Validation of Textured Sensing Skin for Fatigue Crack Monitoring. Proc. SPIE 2021, 11591, 345–351. [Google Scholar]
- Zhu, Y.; Tairych, A. Using a flexible substrate to enhance the sensitivity of dielectric elastomer force sensors. Sens. Actuators A Phys. 2021, 332, 113167. [Google Scholar] [CrossRef]
- Liu, J.; Mao, G.; Huang, X.; Zou, Z.; Qu, S. Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure. J. Appl. Mech. 2015, 82, 101004. [Google Scholar] [CrossRef]
- Yoon, J.I.; Choi, K.S.; Chang, S.P. A novel means of fabricating microporous structures for the dielectric layers of capacitive pressure sensor. Microelectron. Eng. 2017, 179, 60–66. [Google Scholar] [CrossRef]
- Peng, S.; Chen, S.; Huang, Y.; Pei, S.; Guo, X. High Sensitivity Capacitive Pressure Sensor with Bi-Layer Porous Structure Elastomeric Dielectric Formed by a Facile Solution Based Process. Sens. Lett. 2019, 3, 2500104. [Google Scholar] [CrossRef]
- Lee, B.-Y.; Kim, J.; Kim, H.; Kim, C.; Lee, S.-D. Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores. Sens. Actuators A 2016, 240, 103–109. [Google Scholar] [CrossRef]
- Nie, B.; Geng, J.; Yao, T.; Miao, Y.; Zhang, Y.; Chen, X.; Liu, J. Sensing arbitrary contact forces with a flexible porous dielectric elastomer. Mater. Horiz. 2021, 8, 962. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, T.-I.; Kim, M.S.; Kim, S.; Kim, T.-S.; Park, I. Porous dielectric elastomer based ultra-sensitive capacitive pressure sensor and its application to wearable sensing device. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 299–302. [Google Scholar]
- Kwon, D.; Lee, T.-Y.; Shim, J.; Ryu, S.; Kim, M.S.; Kim, S.; Kim, T.-S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interfaces 2016, 8, 16922–16931. [Google Scholar] [CrossRef]
- Ham, J.; Huh, T.M.; Kim, J.; Kim, J.-O.; Park, S.; Cutkosky, M.R.; Bao, Z. Porous Dielectric Elastomer Based Flexible Multiaxial Tactile Sensor for Dexterous Robotic or Prosthetic Hands. Adv. Mater. Technol. 2022, 8, 2200903. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.Y.; Li, J.; Zhu, J. A soft compressive sensor using dielectric elastomers. Smart Mater. Struct. 2016, 25, 035045. [Google Scholar] [CrossRef]
- Hao, W.; Guo, J.; Wang, C.; Wang, S.; Shi, C. A Novel Capacitive-Based Flexible Pressure Sensor Based on Stretchable Composite Electrodes and a Dielectric Elastomer with Microstructures. IEEE Access 2020, 8, 142811. [Google Scholar] [CrossRef]
- Ma, L.; Shuai, X.; Hu, Y.; Liang, X.; Zhu, P.; Sun, R.; Wong, C.-P. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 2018, 6, 13232. [Google Scholar] [CrossRef]
- Zhu, Y.; Giffney, T.; Aw, K. A Dielectric Elastomer-Based Multimodal Capacitive Sensor. Sensors 2022, 22, 622. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.Y. Multi-Axis Soft Sensors Based on Dielectric Elastomer. Soft Robot. 2016, 3, 3–12. [Google Scholar] [CrossRef]
- Böse, H.; Liu, J.; Gerlach, T. Novel dielectric elastomer sensors for the measurement of elevated pressure loads. Proc. SPIE 2021, 11587, 1158708. [Google Scholar]
- Böse, H.; Fuß, E. Novel dielectric elastomer sensors for compression load detection. Proc. SPIE 2014, 9056, 232–244. [Google Scholar]
- Böse, H.; Fuß, E.; Lux, P. Influence of design and material properties on the performance of dielectric elastomer compression sensors. Proc. SPIE 2015, 9430, 522–533. [Google Scholar]
- Böse, H.; Ocak, D.; Ehrlich, J. Applications of pressure-sensitive dielectric elastomer sensors. Proc. SPIE 2016, 9798, 451–463. [Google Scholar]
- Böse, H.; Ehrlich, J.; Gerlach, T.; Shinkar, T.; Uhl, D. Dielectric elastomer strain sensors with enhanced measuring sensitivity. Proc. SPIE 2022, 12042, 181–193. [Google Scholar]
- Böse, H.; Liu, J. Smart elastomer based liquid level sensors with capacitive and resistive measuring principles. Proc. SPIE 2020, 11375, 62–74. [Google Scholar]
- Böse, H.; Müller, D.; Ehrlich, J. Operation tools with dielectric elastomer pressure sensors. Proc. SPIE 2017, 10163, 32–42. [Google Scholar]
- Böse, H.; Ehrlich, J.; Müller, D. Novel Operation Tools with Compression Sensors for Human-Machine Interfaces. In Proceedings of the Sensor 2017, 18th International Conference on Sensors and Measurement Technology, Nuremberg, Germany, 30 May–1 June 2017; pp. 498–503. [Google Scholar]
- Böse, H.; Thuy, M.; Stier, S. Wearable operation device with different types of dielectric elastomer sensors. Proc. SPIE 2018, 10594, 155–166. [Google Scholar]
- Böse, H.; Stier, S.; Muth, S. Glove with versatile operation tools based on dielectric elastomer sensors. Proc. SPIE 2019, 10966, 242–254. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böse, H.; Ehrlich, J. Dielectric Elastomer Sensors with Advanced Designs and Their Applications. Actuators 2023, 12, 115. https://doi.org/10.3390/act12030115
Böse H, Ehrlich J. Dielectric Elastomer Sensors with Advanced Designs and Their Applications. Actuators. 2023; 12(3):115. https://doi.org/10.3390/act12030115
Chicago/Turabian StyleBöse, Holger, and Johannes Ehrlich. 2023. "Dielectric Elastomer Sensors with Advanced Designs and Their Applications" Actuators 12, no. 3: 115. https://doi.org/10.3390/act12030115
APA StyleBöse, H., & Ehrlich, J. (2023). Dielectric Elastomer Sensors with Advanced Designs and Their Applications. Actuators, 12(3), 115. https://doi.org/10.3390/act12030115