Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm
Abstract
:1. Introduction
2. Displacement Model for Giant Magnetostrictive Actuator
2.1. Structure and Working Principle of Giant Magnetostrictive Actuator
2.2. Establishment of Displacement Model
2.3. Solution of Nonlinear Differential Equation
- (1)
- The magnetic field range [Hmin Hmax] is divided into N small intervals with the length .
- (2)
- The effective magnetic field He is calculated by substituting the lower limit into (1) and obtaining the approximate from Equation (2); here m is an integer belonging to [0 N]
- (3)
- Substituting into Equation (3), we obtain a nonlinear ordinary differential equation of the first order. Normalization processing is performed by introducing variable t. The fourth-order Runge–Kutta method is used to solve the differential equation in the range of small intervals.
- (4)
- We calculate the approximate magnetization M by substituting and obtained in the previous step into Equations (4) and (5).
- (5)
- If the whole solution procedure is not completed, the next loop continues with the loop variable being modified.
3. Parameter Identification of Displacement Model
3.1. Principle of Model Parameter Identification
3.2. Parameter Identification Using Differential Evolution Algorithm
4. Identification Results and Experimental Analysis
4.1. Design of Experimental System
4.2. Parameter Identification Results
4.3. Experimental Results Analysis
5. Conclusions and Future Work
- (1)
- The iteration evolution process and identified results indicate that the DE has better performance compared with the GA and PSO in parameter identification. Using the DE, we have obtained fast convergence speed, high identification accuracy, and excellent global optimization ability. The algorithm itself requires few control variables and the identified results are insensitive to parameter variations. Furthermore, parameter identification of a displacement model for GMA using the DE only requires measuring the input current and output displacement.
- (2)
- Simulation and experimental study are performed based on the experimental test platform of GMA. The results show that parameter identification using the DE has excellent stability and repeatability. The output displacements calculated from the identified model are in great agreement with the measured values and the relative error is less than 5.3%. Therefore, it is effective to apply the DE to parameter identification of a displacement model for GMA. The identified model has a significant value for applications in practical engineering.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, Y.; Nakayama, M.; Kura, M.; Yasuda, M.; Fujita, T. Application of active microvibration control system using a giant magnetostrictive actuator. J. Intell. Mater. Syst. Struct. 2007, 18, 1137–1148. [Google Scholar] [CrossRef]
- Zheng, J.J.; Cao, S.Y.; Wang, H.L.; Huang, W.M. Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. Neurocomputing 2007, 70, 749–761. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Liu, Y.; Xu, J.; Wang, H.L. Modeling of giant magnetostrictive actuator based on hysteretic nonlinear theory. Int. J. Appl. Electromagn. Mech. 2010, 13, 87–93. [Google Scholar] [CrossRef]
- Jiles, D.C.; Atherton, D.L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Sablik, M.J.; Wun, H.K.; Burkhardt, G.L.; Jiles, D.C. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis. J. Appl. Phys. 1987, 61, 3799–3801. [Google Scholar] [CrossRef]
- Calkins, F.T.; Smith, R.C.; Flatau, A.B. An energy-based hysteresis model for magnetostrictive transducers. IEEE Trans. Magn. 2000, 36, 429–439. [Google Scholar] [CrossRef]
- Dapino, M.J.; Smith, R.C.; Flatau, A.B. Structural magnetic strain model for magnetostrictive transducers. IEEE Trans. Magn. 2000, 36, 545–556. [Google Scholar] [CrossRef]
- Wang, A.M.; Meng, J.J.; Xu, R.X.; Li, D.C. Parameter Identification and Linear Model of Giant Magnetostrictive Vibrator. Discret. Dyn. Nat. Soc. 2021, 2021, 6676911. [Google Scholar] [CrossRef]
- Jiles, D.C.; Thoelke, J.B.; Devine, M.K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans. Magn. 1992, 28, 27–35. [Google Scholar] [CrossRef]
- Lederer, D.; Igarashi, H.; Kost, A.; Honma, T. On the parameter identification and application of the Jiles-atherton hysteresis model for numerical modelling of measured characteristics. IEEE Trans. Magn. 1999, 35, 1211–1214. [Google Scholar] [CrossRef]
- Cao, S.Y.; Wang, B.W.; Yan, R.G.; Huang, W.M.; Yang, Q.X. Optimization of hysteresis parameters for the Jiles-atherton model using a genetic algorithm. IEEE Trans. Appl. Supercond. 2004, 40, 1157–1160. [Google Scholar] [CrossRef]
- Cao, S.Y.; Wang, B.W.; Zheng, J.J.; Yan, R.G.; Huang, M.M. Parameter identification of hysteretic model for giant magnetostrictive actuator using hybrid genetic algorithm. Proc. Chin. Soc. Electr. Eng. 2004, 24, 127–132. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2004&filename=ZGDC20041000N&uniplatform=NZKPT&v=DcGNqwzbbN4cKv7kRuHKjWb8AQypHBNzpeoKd34LuC0JNGOEvrpH6Yr9pqL_ZocW (accessed on 21 October 2020).
- Kis, P.; Iványi, A. Parameter identification of Jiles–Atherton model with nonlinear least-square method. Phys. B 2004, 343, 59–64. [Google Scholar] [CrossRef]
- Liu, H.F.; Jia, Z.Y.; Wang, F.J.; Zong, F.C. Parameter identification of displacement model for giant magnetostrictive actuator. Chin. J. Mech. Eng. 2011, 47, 115–120. Available online: http://www.cjmenet.com.cn/CN/Y2011/V47/I15/115 (accessed on 23 October 2020). [CrossRef]
- Knypinski, L.; Nowak, L.; Sujka, P.; Radziuk, K. Application of a PSO algorithm for identification of the parameters of Jiles-atherton hysteresis model. Arch. Electr. Eng. 2015, 61, 139–148. [Google Scholar] [CrossRef]
- Yang, L.H.; Li, J.F.; Wu, H.P.; Lou, J.J. Parameter identification of nonlinear model of giant magnetostrictive actuator. J. Vib. Shock 2015, 34, 142–146. [Google Scholar] [CrossRef]
- Yang, Z.S.; He, Z.B.; Li, D.W.; Zhao, Z.L.; Xue, G.M. Dynamic modeling of a giant magnetostrictive actuator based on PSO. J. Appl. Sci. 2015, 15, 311–315. [Google Scholar] [CrossRef]
- Toman, M.; Stumberger, G.; Dolina, D. Parameter identification of the Jiles–Atherton hysteresis model using differential evolution. IEEE Trans. Magn. 2008, 44, 1098–1101. [Google Scholar] [CrossRef]
- Ju, X.J.; Lu, J.L.; Jin, H.Y. Study on heat transfer characteristics and thermal error suppression method of cylindrical giant magnetostrictive actuator for ball screw preload. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 782–794. [Google Scholar] [CrossRef]
- Igobi, D.K.; Abasiekwere, U. Results on Uniqueness of Solution of Nonhomogeneous Impulsive Retarded Equation Using the Generalized Ordinary Differential Equation. Int. J. Differ. Equ. 2019, 2019, 2523615. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Zhang, C.M.; Chen, J.; Xin, B. Distributed differential evolution algorithm with adaptive parameters. Control Decis. 2014, 29, 701–706. [Google Scholar] [CrossRef]
- Wang, X.-K.; Wang, G.-B. A Hybrid Method Based on the Iterative Fourier Transform and the Differential Evolution for Pattern Synthesis of Sparse Linear Arrays. Int. J. Antennas Propag. 2018, 2018, 6309192. [Google Scholar] [CrossRef]
- Ronkkonen, J.; Kukkonen, S.; Price, K.V. Real-parameter optimization with differential evolution. IEEE Congr. Evol. Comput. 2005, 1, 506–513. [Google Scholar] [CrossRef]
- Zielinski, K.; Weitkemper, P.; Laur, R.; Kammeyer, K.D. Parameter study for differential evolution using a power allocation problem including interference cancellation. IEEE Congr. Evol. Comput. 2006, 4, 1857–1864. [Google Scholar] [CrossRef]
Parameter | Range | 1st | 2nd | 3rd | 4th | 5th | Mean | Variance |
---|---|---|---|---|---|---|---|---|
a × 103 | [1, 8] | 1.0000 | 2.1017 | 4.6266 | 1.1300 | 3.7097 | 2.5136 | 2.0541 |
Ms × 105 (A/m) | [1, 8] | 3.7507 | 5.1124 | 4.6129 | 4.3803 | 4.5650 | 4.4843 | 0.1933 |
α | [−0.02, 0.01] | −0.0176 | −0.0100 | −0.0009 | −0.0042 | −0.0074 | −0.0080 | 3.2 × 10−5 |
c | [0, 0.08] | 0.0489 | 0.0187 | 0.0074 | 0.0560 | 0.0256 | 0.0313 | 0.0003 |
k × 103 | [0, 8] | 3.3548 | 2.2180 | 1.3627 | 6.6471 | 1.2190 | 2.9603 | 3.9767 |
γ1 × 10−15 | [0, 6] | 3.8592 | 2.2933 | 3.6246 | 3.2317 | 3.4721 | 3.2962 | 0.2931 |
E(θ) (μm2) | ---- | 0.1567 | 0.2473 | 0.1828 | 0.1582 | 0.1581 | 0.1806 | 0.0012 |
T | ---- | 125 | 240 | 324 | 252 | 60 | 200.2 | 8981 |
Parameter | Range | 1st | 2nd | 3rd | 4th | 5th | Mean | Variance |
---|---|---|---|---|---|---|---|---|
a × 103 | [1, 8] | 1.0000 | 6.5682 | 6.6305 | 1.0000 | 1.0002 | 3.2398 | 7.5249 |
Ms × 105 (A/m) | [1, 8] | 3.0399 | 3.8559 | 4.0339 | 3.5648 | 3.9496 | 3.6888 | 0.1303 |
α | [−0.02, 0.01] | −0.0200 | 0.0100 | 0.0100 | −0.0150 | −0.0136 | −0.0057 | 0.0002 |
c | [0, 0.08] | 0.0600 | 0.0600 | 0.0800 | 0.0603 | 0.0600 | 0.0652 | 0.0001 |
k × 103 | [0, 8] | 3.8118 | 1.0844 | 1.1075 | 4.3433 | 4.3168 | 2.9328 | 2.2852 |
γ1 × 10−15 | [0, 6] | 6.0000 | 6.0000 | 5.4899 | 4.4506 | 3.6191 | 5.1119 | 0.8772 |
E(θ) (μm2) | ---- | 0.1477 | 0.1462 | 0.1771 | 0.1765 | 0.1462 | 0.1587 | 0.0002 |
T | ---- | 169 | 188 | 356 | 335 | 320 | 273.6 | 6196 |
Parameter | Range | 1st | 2rd | 3nd | 4th | 5th | Mean | Variance |
---|---|---|---|---|---|---|---|---|
a × 103 | [1, 8] | 2.5279 | 2.5279 | 2.5279 | 2.5279 | 2.5279 | 2.5279 | 0 |
Ms × 105 (A/m) | [1, 8] | 5.5190 | 3.9120 | 5.1143 | 5.1143 | 4.5911 | 4.8501 | 0.3068 |
α | [−0.02, 0.01] | −0.0142 | −0.0200 | −0.0153 | −0.0153 | −0.0170 | −0.0164 | 4.1 × 10−6 |
c | [0, 0.08] | 0.0600 | 0.0600 | 0.0600 | 0.0600 | 0.0600 | 0.0600 | 0 |
k × 103 | [0, 8] | 0.7784 | 0.7784 | 0.7784 | 0.7784 | 0.7784 | 0.7784 | 0 |
γ1 × 10−15 | [0, 6] | 2.1690 | 4.3170 | 2.5259 | 2.5259 | 3.1344 | 2.9344 | 0.5742 |
E(θ) (μm2) | ---- | 0.1352 | 0.1352 | 0.1352 | 0.1352 | 0.1352 | 0.1352 | 0 |
T | ---- | 81 | 121 | 102 | 102 | 90 | 99.2 | 181.4 |
Current (A) | Measured Value (μm) | Calculated Value (μm) | Error |
---|---|---|---|
0.24 | 4.47 | 4.00 | 10.51% |
0.36 | 9.54 | 9.42 | 1.26% |
0.48 | 16.87 | 16.18 | 4.09% |
0.6 | 23.59 | 23.28 | 1.31% |
0.72 | 30.16 | 29.85 | 1.03% |
0.88 | 37.05 | 37.02 | 0.08% |
0.96 | 40.3 | 39.88 | 1.04% |
0.8 | 37.3 | 37.09 | 0.57% |
0.6 | 28.31 | 27.7 | 2.15% |
0.52 | 23.89 | 23.12 | 3.22% |
0.4 | 16.39 | 15.85 | 3.29% |
0.28 | 9.93 | 8.98 | 9.57% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Lu, J.; Rong, B.; Jin, H. Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm. Actuators 2023, 12, 76. https://doi.org/10.3390/act12020076
Ju X, Lu J, Rong B, Jin H. Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm. Actuators. 2023; 12(2):76. https://doi.org/10.3390/act12020076
Chicago/Turabian StyleJu, Xiaojun, Jili Lu, Bosong Rong, and Hongyan Jin. 2023. "Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm" Actuators 12, no. 2: 76. https://doi.org/10.3390/act12020076
APA StyleJu, X., Lu, J., Rong, B., & Jin, H. (2023). Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm. Actuators, 12(2), 76. https://doi.org/10.3390/act12020076