Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Li, J.-F. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 2019, 7, 4284–4303. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, T.; Wu, J. Lead-free (K, Na)NbO3-based materials: Preparation techniques and piezoelectricity. ACS Omega 2020, 5, 3099–3107. [Google Scholar] [CrossRef] [PubMed]
- Thong, H.-C.; Zhao, C.; Zhou, Z.; Wu, C.-F.; Liu, Y.-X.; Du, Z.-Z.; Li, J.-F.; Gong, W.; Wang, K. Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 2019, 29, 37–48. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Messing, G.L.; Trolier-McKinstry, S.; Sabolsky, E.; Duran, C.; Kwon, S.; Brahmaroutu, B.; Park, P.; Yilmaz, H.; Rehrig, P.; Eitel, K. Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 2004, 29, 45–96. [Google Scholar] [CrossRef]
- Gao, L.; Dursun, S.; Gurdal, A.E.; Hennig, E.; Zhang, S.; Randall, C.A. Atmospheric controlled processing enabling highly textured NKN with enhanced piezoelectric performance. J. Eur. Ceram. Soc. 2019, 39, 963–972. [Google Scholar] [CrossRef]
- Li, P.; Zhai, J.; Shen, B.; Zhang, S.; Li, X.; Zhu, F.; Zhang, X. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 2018, 30, 1705171. [Google Scholar] [CrossRef]
- Go, S.-H.; Kim, H.; Kim, D.-S.; Eum, J.-M.; Chae, S.-J.; Kim, E.-J.; Nahm, S. Improvement of piezoelectricity of (Na, K) Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. J. Eur. Ceram. Soc. 2022, 42, 6478–6492. [Google Scholar] [CrossRef]
- Chae, S.-J.; Kim, D.-S.; Kim, H.; Go, S.-H.; Kim, S.-W.; Kim, E.-J.; Eum, J.-M.; Kim, I.-S.; Nahm, S. Structural and piezoelectric properties of textured NLKNS-CZ thick films and their application in planar piezoactuator. J. Am. Ceram. Soc. 2022, 105, 1185–1197. [Google Scholar] [CrossRef]
- Kim, D.-S.; Eum, J.-M.; Go, S.-H.; Shin, H.-S.; Kim, H.; Chae, S.-J.; Kim, S.-W.; Kim, E.-J.; Woo, J.-U.; Nahm, S. Remarkable piezoelectric performance and good thermal stability of [001]-textured 0.96(K0.5Na0.5)(Nb1-ySby)O3-0.04SrZrO3 lead-free piezoelectric ceramics. J. Alloys Compd. 2021, 882, 160662. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, Y.; Li, F.; Yang, B.; Sun, Y.; Wu, J.; Zhang, S.; Wang, R.; Cao, W. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl. Mater. Interfaces 2017, 9, 29863–29871. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Xu, Z.; Wei, X.; Luo, J.; Shrout, T.R. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1− x) Pb (Mg1/3Nb2/3)O3− x PbTiO3 crystals. J. Appl. Phys. 2010, 108, 034106. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Lin, D.; Luo, J.; Xu, Z.; Wei, X.; Shrout, T.R. Electromechanical properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J. Appl. Phys. 2011, 109, 014108. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, J.; Wang, X.; Cheng, X.; Zhu, J.; Xiao, D. Rhombohedral–orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr. Appl. Phys. 2013, 13, 1647–1650. [Google Scholar] [CrossRef]
- Xue, D.; Shi, M.; Chen, Y.; Liu, K.; Chen, Z.; Jiang, X. Piezoelectric and dielectric properties of lead-free 0.96(K0.48Na0.535)0.96Li0.04Nb1-xSbxO3-0.04CaZrO3 ceramics with rhombohedral–orthorhombic phase boundary. Ferroelectrics 2017, 514, 1–8. [Google Scholar] [CrossRef]
- Zuo, R.; Fu, J.; Lv, D.; Liu, Y. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 2010, 93, 2783–2787. [Google Scholar] [CrossRef]
- Tao, H.; Wu, H.; Liu, Y.; Zhang, Y.; Wu, J.; Li, F.; Lyu, X.; Zhao, C.; Xiao, D.; Zhu, J. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 2019, 141, 13987–13994. [Google Scholar] [CrossRef]
- Go, S.-H.; Kim, D.-S.; Eum, J.-M.; Shin, H.-S.; Chae, S.-J.; Kim, S.-W.; Kim, E.-J.; Woo, J.-U.; Nahm, S. Excellent piezoelectric properties of (K, Na)(Nb, Sb)O3-CaZrO3-(Bi, Ag)ZrO3 lead-free piezoceramics. J. Alloys Compd. 2021, 889, 161817. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Yao, W.; Liu, D.; He, G. Remarkably strong piezoelectricity, rhombohedral-orthorhombic-tetragonal phase coexistence and domain structure of (K, Na)(Nb, Sb)O3–(Bi, Na)ZrO3–BaZrO3 ceramics. J. Alloys Compd. 2020, 820, 153411. [Google Scholar] [CrossRef]
- Go, S.-H.; Eum, J.-M.; Kim, D.-S.; Chae, S.-J.; Kim, S.-W.; Kim, E.-J.; Chae, Y.-G.; Woo, J.-U.; Nahm, S. Piezoelectricity of (K, Na)(Nb, Sb)O3–SrZrO3–(Bi, Ag)ZrO3 piezoceramics and their application in planar-type actuators. J. Mater. Chem. C 2021, 9, 16741–16750. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, D.; Zhao, W.; Zhou, H.; Fang, H. Topochemical synthesis of a high-aspect-ratio platelet NaNbO3 template. J. Am. Ceram. Soc. 2007, 90, 2399–2403. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, Z.; Chao, X.; Liu, Z.; Wang, Z. Synthesis and morphology of anisotropic NaNbO3 seed crystals. Mater. Chem. Phys. 2008, 111, 195–200. [Google Scholar] [CrossRef]
- Li, P.; Liu, B.; Shen, B.; Zhai, J.; Zhang, Y.; Li, F.; Liu, X. Mechanism of significantly enhanced piezoelectric performance and stability in textured potassium-sodium niobate piezoelectric ceramics. J. Eur. Ceram. Soc. 2018, 38, 75–83. [Google Scholar] [CrossRef]
- Kimura, T.; Yi, Y.; Sakurai, F. Mechanisms of texture development in lead-free piezoelectric ceramics with perovskite structure made by the templated grain growth process. Materials 2010, 3, 4965–4978. [Google Scholar] [CrossRef] [PubMed]
- Kou, Q.; Yang, B.; Sun, Y.; Yang, S.; Liu, L.; Xie, H.; Chang, Y.; Zhang, S.; Li, F. Tetragonal (Ba, Ca)(Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability. J. Mater. 2022, 8, 366–374. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.; Gao, J.; Chen, H. Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J. Alloys Compd. 2009, 480, 870–873. [Google Scholar] [CrossRef]
- Hussain, A.; Maqbool, A.; Kim, J.S.; Song, T.K.; Kim, M.H.; Kim, W.J.; Kim, S.S. Sodium excess Ta-Modified (K0.5Na0.5)NbO3 ceramics prepared by reactive template grain growth method. Int. J. Appl. Ceram. Technol. 2015, 12, 228–234. [Google Scholar] [CrossRef]
- Gupta, S.; Belianinov, A.; Okatan, M.B.; Jesse, S.; Kalinin, S.V.; Priya, S. Fundamental limitation to the magnitude of piezoelectric response of ⟨001⟩pc textured K0.5Na0.5NbO3 ceramic. Appl. Phys. Lett. 2014, 104, 172902. [Google Scholar] [CrossRef]
- Liu, B.; Li, P.; Shen, B.; Zhai, J.; Zhang, Y.; Li, F.; Liu, X. Enhanced piezoelectric properties and temperature-insensitive strain behavior of <001>-textured KNN-based ceramics. Ceram. Int. 2017, 43, 8004–8009. [Google Scholar] [CrossRef]
- Li, L.; Bai, W.; Zhang, Y.; Shen, B.; Zhai, J. The preparation and piezoelectric property of textured KNN-based ceramics with plate-like NaNbO3 powders as template. J. Alloys Compd. 2015, 622, 137–142. [Google Scholar] [CrossRef]
- Weitzing, H.; Schneider, G.; Steffens, J.; Hammer, M.; Hoffmann, M. Cyclic fatigue due to electric loading in ferroelectric ceramics. J. Eur. Ceram. Soc. 1999, 19, 1333–1337. [Google Scholar] [CrossRef]
- Chang, Y.; Watson, B.; Fanton, M.; Meyer, R.J.M.; Messing, G.L., Jr. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics. Appl. Phys. Lett. 2017, 111, 232901. [Google Scholar] [CrossRef]
- Davis, M.; Budimir, M.; Damjanovic, D.; Setter, N. Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J. Appl. Phys. 2007, 101, 054112. [Google Scholar] [CrossRef]
- Park, S.-E.; Shrout, T.R. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater. Res. Innov. 1997, 1, 20–25. [Google Scholar] [CrossRef]
- Zhang, R.; Cao, W. Transformed material coefficients for single-domain 0.67Pb(Mg1∕3Nb2∕3)O3–0.33PbTiO3 single crystals under differently defined coordinate systems. Appl. Phys. Lett. 2004, 85, 6380–6382. [Google Scholar] [CrossRef]
- Zgonik, M.; Schlesser, R.; Biaggio, I.; Voit, E.; Tscherry, J.; Günter, P. Materials constants of KNbO3 relevant for electro-and acousto-optics. J. Appl. Phys. 1993, 74, 1287–1297. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, J.; Liu, X.; Yang, L.; Lu, X.; Li, Y.; Huo, D.; Lü, W.; Yang, B.; Cao, W. Tetragonal (K, Na)NbO3 based lead-free single crystal: Growth, full tensor properties, and their orientation dependence. Appl. Phys. Lett. 2017, 111, 172903. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Xu, Z.; Wei, X.; Shrout, T.R. Critical property in relaxor-PbTiO3 single crystals–shear piezoelectric response. Adv. Funct. Mater. 2011, 21, 2118–2128. [Google Scholar] [CrossRef]
Structural Model (SG) | Site Label | x | y | z | Lattice Parameter [Å] | R Factor [%] |
---|---|---|---|---|---|---|
Orthorhombic (Amm2) 54.7% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0(-) 0.500(-) | 0(-) 0(-) 0(-) 0.308(11) | 0(-) 0.590(18) 0.600(19) 0.250(17) | a = 3.9738(3) b = 5.6400(3) c = 5.6409(3) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 3.99/5.31/3.14 3.66/2.71 |
Rhombohedral (R3m) 25.9% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O | 0(-) 0(-) 0.511(-) | 0(-) 0(-) −0.511(-) | 0.481(2) 0(-) 0.484(-) | a = b = 5.6313(3) c = 6.9095(6) α = β = 90° γ = 120° | Rp/Rwp/Rexp Rb/Rf 3.99/5.31/3.14 2.94/2.77 |
Tetragonal (P4mm) 19.4% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0.500(-) 0.500(-) | 0(-) 0.500(-) 0.500(-) 0(-) | 0(-) 0.517(16) 0.055(27) 0.612(27) | a = b = 3.9779(2) c = 3.9825(3) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 3.99/5.31/3.14 3.75/2.70 |
BAZ Content | Structural Model (SG) | Site Label | x | y | z | Lattice Parameter [Å] | R Factor [%] |
---|---|---|---|---|---|---|---|
x = 0.0 | Orthorhombic (Amm2) 65.7% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0(-) 0.500(-) | 0(-) 0(-) 0(-) 0.333(10) | 0(-) 0.500(5) 0.470(9) 0.254(12) | a = 3.9758(3) b = 5.6392(2) c = 5.6407(2) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 4.13/5.37/3.25 3.76/2.40 |
Rhombohedral (R3m) 26.2% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O | 0(-) 0(-) 0.511(-) | 0(-) 0(-) –0.511(-) | 0.475(13) 0(-) 0.484(-) | a = b = 5.6330(3) c = 6.9137(6) α = β = 90° γ = 120° | Rp/Rwp/Rexp Rb/Rf 4.13/5.37/3.25 3.07/2.40 | |
Tetragonal (P4mm) 8.1% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0.500(-) 0.500(-) | 0(-) 0.500(-) 0.500(-) 0(-) | 0(-) 0.624(15) 0.105(25) 0.578(25) | a = b = 3.9793(4) c = 3.9826(4) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 4.13/5.37/3.25 4.31/2.66 | |
x = 0.01 | Orthorhombic (Amm2) 59.5% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0(-) 0.500(-) | 0(-) 0(-) 0(-) 0.335(7) | 0(-) 0.465(9) 0.399(15) 0.231(11) | a = 3.9755(3) b = 5.6376(3) c = 5.6443(3) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 4.02/5.21/3.24 3.31/1.75 |
Rhombohedral (R3m) 27.6% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O | 0(-) 0(-) 0.511(-) | 0(-) 0(-) –0.511(-) | 0.489(8) 0(-) 0.484(-) | a = b = 5.6324(2) c = 6.9122(6) α = β = 90° γ = 120° | Rp/Rwp/Rexp Rb/Rf 4.02/5.21/3.24 2.54/1.51 | |
Tetragonal (P4mm) 12.9% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0.500(-) 0.500(-) | 0(-) 0.500(-) 0.500(-) 0(-) | 0(-) 0.547(8) 0.062(22) 0.589(22) | a = b = 3.9792(3) c = 3.9826(3) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 4.02/5.21/3.24 3.10/1.55 | |
x = 0.03 | Orthorhombic (Amm2) 28.3% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0(-) 0.500(-) | 0(-) 0(-) 0(-) 0.238(17) | 0(-) 0.510(6) 0.523(13) 0.278(15) | a = 3.9692(3) b = 5.6421(3) c = 5.6453(3) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 3.63/4.80/3.18 2.77/1.71 |
Rhombohedral (R3m) 27.5% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O | 0(-) 0(-) 0.511(-) | 0(-) 0(-) –0.511(-) | 0.529(5) 0(-) 0.511(6) | a = b = 5.6268(3) c = 6.9041(6) α = β = 90° γ = 120° | Rp/Rwp/Rexp Rb/Rf 3.63/4.80/3.18 1.78/1.58 | |
Tetragonal (P4mm) 44.2% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0.500(-) 0.500(-) | 0(-) 0.500(-) 0.500(-) 0(-) | 0(-) 0.542(4) 0.101(8) 0.598(8) | a = b = 3.9762(2) c = 3.9857(2) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 3.63/4.80/3.18 2.46/1.59 | |
x = 0.04 | Rhombohedral (R3m) 27.9% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O | 0(-) 0(-) 0.495(-) | 0(-) 0(-) –0.495(-) | 0.458(2) 0(-) 0.482(6) | a = b = 5.6265(2) c = 6.9057(5) α = β = 90° γ = 120° | Rp/Rwp/Rexp Rb/Rf 3.33/4.37/3.03 1.84/1.01 |
Tetragonal (P4mm) 72.1% | K/Na/Sr/Bi/Ag Nb/Sb/Zr O1 O2 | 0(-) 0.500(-) 0.500(-) 0.500(-) | 0(-) 0.500(-) 0.500(-) 0(-) | 0(-) 0.529(4) 0.064(9) 0.550(9) | a = b = 3.9739(1) c = 3.9893(2) α = β = γ = 90° | Rp/Rwp/Rexp Rb/Rf 3.33/4.37/3.03 2.25/1.35 |
BAZ Content | Structure | Proportions of the R, O, and T Structures (%) | ||
---|---|---|---|---|
Rhombohedral (R3m) | Orthorhombic (Amm2) | Tetragonal (P4mm) | ||
x = 0.0 | R-O-T | 26.2 | 65.7 | 8.1 |
x = 0.01 | R-O-T | 27.6 | 59.5 | 12.9 |
x = 0.02 | R-O-T | 25.9 | 54.7 | 19.4 |
x = 0.03 | R-O-T | 27.5 | 28.3 | 44.2 |
x = 0.04 | R-T | 27.9 | - | 72.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, S.-H.; Kim, D.-S.; Chae, Y.-G.; Chae, S.-J.; Kim, E.-J.; Yu, H.-M.; Kim, B.-J.; Park, S.-J.; Lee, J.-H.; Nahm, S. Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film. Actuators 2023, 12, 66. https://doi.org/10.3390/act12020066
Go S-H, Kim D-S, Chae Y-G, Chae S-J, Kim E-J, Yu H-M, Kim B-J, Park S-J, Lee J-H, Nahm S. Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film. Actuators. 2023; 12(2):66. https://doi.org/10.3390/act12020066
Chicago/Turabian StyleGo, Su-Hwan, Dae-Su Kim, Yeon-Gyeong Chae, Seok-June Chae, Eun-Ji Kim, Hyeon-Min Yu, Bum-Joo Kim, Seok-Jung Park, Joun-Ho Lee, and Sahn Nahm. 2023. "Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film" Actuators 12, no. 2: 66. https://doi.org/10.3390/act12020066
APA StyleGo, S. -H., Kim, D. -S., Chae, Y. -G., Chae, S. -J., Kim, E. -J., Yu, H. -M., Kim, B. -J., Park, S. -J., Lee, J. -H., & Nahm, S. (2023). Effect of the Crystal Structure on the Piezoelectricity of [001]-Textured (Na, K)(Nb, Sb)O3-SrZrO3-(Bi, Ag)ZrO3 Lead-Free Piezoelectric Thick Film. Actuators, 12(2), 66. https://doi.org/10.3390/act12020066