Automatic Optimization for Compliant Constant Force Mechanisms
Abstract
:1. Introduction
- An automatic model-based optimization framework is developed for compliant constant force mechanisms, which can automatically optimize the preliminary structure according to the desired constant force objective;
- The proposed technique reduces the discrepancy between numerical analysis and FEA results while further enhancing the performance of the designed mechanism, hence accelerating the development process of CFMs;
- The experimental results reveal that the proposed method can achieve consistency between the numerical model and the physical prototype, bridging the gap between theory and practical application for the design of compliant constant force mechanisms.
2. Preliminary Model Design
2.1. Design of Negative-Stiffness Mechanism
2.2. Design of Positive-Stiffness Mechanism
2.3. Parameters of Preliminary Model
3. Parametric Sensitivity Analysis
4. Mechanism Optimization
- The accuracy of the optimized constant force is ±10%;
- Maximize the constant force stroke ;
- Minimize the gradient between the selected points ;
- Maximize the total deformation average (TDA) of the mechanism;
- Minimize the equivalent stress maximum (ESM) of the mechanism.
5. Experimental Verification
5.1. Experimental Setup
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Gu, X.; Xiao, X.; Lim, C.M.; Ren, H. Compliant and Flexible Robotic System with Parallel Continuum Mechanism for Transoral Surgery: A Pilot Cadaveric Study. Robotics 2022, 11, 135. [Google Scholar] [CrossRef]
- Leveziel, M.; Haouas, W.; Laurent, G.J.; Gauthier, M.; Dahmouche, R. MiGriBot: A miniature parallel robot with integrated gripping for high-throughput micromanipulation. Sci. Robot. 2022, 7, eabn4292. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xu, Q. Design and precision position/force control of a piezo-driven microinjection system. IEEE/ASME Trans. Mechatronics 2017, 22, 1744–1754. [Google Scholar] [CrossRef]
- Lyu, Z.; Xu, Q. Design and testing of a new piezoelectric-actuated symmetric compliant microgripper. Actuators 2022, 11, 77. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.F.; Xing, D. Sensing and control for simultaneous precision peg-in-hole assembly of multiple objects. IEEE Trans. Autom. Sci. Eng. 2019, 17, 310–324. [Google Scholar] [CrossRef]
- Veroli, A.; Buzzin, A.; Frezza, F.; De Cesare, G.; Hamidullah, M.; Giovine, E.; Verotti, M.; Belfiore, N.P. An Approach to the Extreme Miniaturization of Rotary Comb Drives. Actuators 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, G.; Xu, Q. Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism. Actuators 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Hao, G. Design of a Cylindrical Compliant Linear Guide with Decoupling Parallelogram Mechanisms. Micromachines 2022, 13, 1275. [Google Scholar] [CrossRef]
- Howell, L.L. Compliant Mechanisms. In 21st Century Kinematics; Springer: London, UK, 2013; pp. 189–216. [Google Scholar]
- Wang, D.A.; Chen, J.H.; Pham, H.T. A Constant-Force Bistable Micromechanism. Sens. Actuators A Phys. 2013, 189, 481–487. [Google Scholar] [CrossRef]
- Gallego, J.A.; Herder, J.L. Criteria for the Static Balancing of Compliant Mechanisms. In Proceedings of the ASME Design Engineering Technical Conference, Montreal, QC, Canada, 15–18 August 2010; pp. 465–473. [Google Scholar]
- Dunning, A.G.; Tolou, N.; Herder, J.L. Review Article: Inventory of platforms towards the design of a statically balanced six degrees of freedom compliant precision stage. Mech. Sci. 2011, 2, 157–168. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, S. Fully-compliant statically-balanced mechanisms without prestressing assembly: Concepts and case studies. Mech. Sci. 2011, 2, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.W.; Lan, C.C. Functional joint mechanisms with constant-torque outputs. Mech. Mach. Theory 2013, 62, 166–181. [Google Scholar] [CrossRef]
- Radaelli, G.; Herder, J.L. A monolithic compliant large-range gravity balancer. Mech. Mach. Theory 2016, 102, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xu, Q. Design and Modeling of Constant-Force Mechanisms: A Survey. Mech. Mach. Theory 2018, 119, 1–21. [Google Scholar] [CrossRef]
- Mottola, G.; Cocconcelli, M.; Rubini, R.; Carricato, M. Gravity Balancing of Parallel Robots by Constant-Force Generators. In Gravity Compensation in Robotics; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–273. [Google Scholar]
- Wei, Y.; Xu, Q. Design of a new passive end-effector based on constant-force mechanism for robotic polishing. Robot. Comput.-Integr. Manuf. 2022, 74, 102278. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, P.; Wang, H. A curved-beam based quasi-constant force mechanism supporting large range and force-sensitive robotic manipulation. Mech. Mach. Theory 2022, 172, 104799. [Google Scholar] [CrossRef]
- van Eijk, J.; Dijksman, J. Plate spring mechanism with constant negative stiffness. Mech. Mach. Theory 1979, 14, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.U. Design of Constant Force Compliant Mechanisms. Ph.D. Thesis, Texas A&M University-Kingsville, Kingsville, TX, USA, 2014. [Google Scholar]
- Tolman, K.A.; Merriam, E.G.; Howell, L.L. Compliant Constant-Force Linear-Motion Mechanism. Mech. Mach. Theory 2016, 106, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Pardeshi, S.; Kandharkar, S.; Deshmukh, B. Monolithic Compliant Slider Crank Mechanism for Motion Amplification. Mater. Today Proc. 2017, 4, 1677–1682. [Google Scholar] [CrossRef]
- Xu, Q. Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage. J. Mech. Robot. 2017, 9, 011006. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Q. Design of a Flexure-Based Constant-Force XY Precision Positioning Stage. Mech. Mach. Theory 2017, 108, 1–13. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Q. Design and Testing of a Flexure-Based Constant-Force Stage for Biological Cell Micromanipulation. IEEE Trans. Autom. Sci. Eng. 2017, 15, 1114–1126. [Google Scholar] [CrossRef]
- Bossert, D.; Ly, U.L.; Vagners, J. Experimental Evaluation of a Hybrid Position and Force Surface Following Algorithm for Unknown Surfaces. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 3, pp. 2252–2257. [Google Scholar]
- Liu, Y.; Zhang, Y.; Xu, Q. Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams. IEEE/ASME Trans. Mechatronics 2016, 22, 476–486. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q. Design and Analysis of a Constant-Force Parallel Micro-Gripper. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp. 1112–1117. [Google Scholar]
- Ye, T.; Ling, J.; Kang, X.; Feng, Z.; Xiao, X. A Novel Two-Stage Constant Force Compliant Microgripper. J. Mech. Des. 2021, 143, 053302. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q. Design, Fabrication, and Testing of a New Compact Piezo-Driven Flexure Stage for Vertical Micro/Nanopositioning. IEEE Trans. Autom. Sci. Eng. 2018, 16, 908–918. [Google Scholar] [CrossRef]
- Ding, B.; Li, X.; Li, Y. FEA-based Optimization and Experimental Verification of a Typical Flexure-Based Constant Force Module. Sens. Actuators A Phys. 2021, 332, 113083. [Google Scholar] [CrossRef]
- Xu, Q. New Flexure Parallel-Kinematic Micropositioning System with Large Workspace. IEEE Trans. Robot. 2011, 28, 478–491. [Google Scholar] [CrossRef]
- Ma, F.; Chen, G. Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms. J. Mech. Robot. 2017, 9, 59063. [Google Scholar] [CrossRef]
- Jensen, B.D.; Hoist, G.L.; Teichert, G.H. Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms. J. Mech. Des. 2011, 133, 051002. [Google Scholar]
- Xu, Q. A Novel Compliant Micropositioning Stage with Dual Ranges and Resolutions. Sens. Actuators A Phys. 2014, 205, 6–14. [Google Scholar] [CrossRef]
Parameter | Name | Value | Unit | |
---|---|---|---|---|
Bistable beam | length | 25 | mm | |
out-of-plane thickness | 3 | mm | ||
in-plane width | 1.1 | mm | ||
inclination angle | 5 | |||
U-shaped beam | length | 20 | mm | |
out-of-plane thickness | 3 | mm | ||
in-plane width | 1.1 | mm |
Parameter | Value | Unit | |
---|---|---|---|
Bistable beam | [4:0.5:8.5] | ||
[25:1.0:34] | mm | ||
[1.0:1.0:10] | mm | ||
[0.5:0.1:1.4] | mm |
Property | Value | Unit |
---|---|---|
Density | 1040 | kg/m3 |
Young’s Modulus | 2.39 | GPa |
Poisson’s Ratio | 0.399 | / |
Bulk Modulus | 3.944 | GPa |
Shear Modulus | 0.854 | GPa |
Tensile Yield Strength | 41.4 | MPa |
Tensile Ultimate Strength | 44.3 | MPa |
Parameter | Value | Unit | |
---|---|---|---|
Optimal values of parameters | t | 1.8 | mm |
5.1 | |||
w | 1.0 | mm | |
16.9 | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Zhang, X.; Wang, G. Automatic Optimization for Compliant Constant Force Mechanisms. Actuators 2023, 12, 61. https://doi.org/10.3390/act12020061
Tong Z, Zhang X, Wang G. Automatic Optimization for Compliant Constant Force Mechanisms. Actuators. 2023; 12(2):61. https://doi.org/10.3390/act12020061
Chicago/Turabian StyleTong, Zongdi, Xiaozhi Zhang, and Guangwei Wang. 2023. "Automatic Optimization for Compliant Constant Force Mechanisms" Actuators 12, no. 2: 61. https://doi.org/10.3390/act12020061
APA StyleTong, Z., Zhang, X., & Wang, G. (2023). Automatic Optimization for Compliant Constant Force Mechanisms. Actuators, 12(2), 61. https://doi.org/10.3390/act12020061