# Cybernetic Proportional System for a Hydraulic Cylinder Drive Using Proportional Seat-Type Valves

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Concept of Open-Loop Independent Metering

#### 2.1. Operating Modes

#### 2.2. The Control Strategy

## 3. Simulation

^{®}with a dynamic model of the cylinder

#### 3.1. Compressive Force

#### 3.2. Tensile Force

#### 3.3. Toggling between Operating States

## 4. Experimental Investigations

#### 4.1. The CPS Valves

#### 4.2. Test Facility

#### 4.3. Measurements

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

APV | Asymmetric Proportional Valve |

CPS | Cybernetic Proportional System |

IM | Independent Metering |

LS | Load Sensing |

## Appendix A

(a) Simulation Model | |
---|---|

parameter | value |

piston area | ${A}_{P}=31\text{}{\mathrm{cm}}^{2}$ |

rod-side area | ${A}_{R}=15\text{}{\mathrm{cm}}^{2}$ |

dead mass | $m=50\text{}\mathrm{kg}$ |

cylinder stroke | $l=800\text{}\mathrm{mm}$ |

viscous damping | ${d}_{v}=1\text{}\frac{\mathrm{Ns}}{\mathrm{mm}}$ |

nominal flow rate | ${Q}_{N}=20\text{}\frac{\ell}{\mathrm{min}}$ |

nominal pressure drop | ${p}_{N}=5\text{}\mathrm{bar}$ |

valve response time | ${t}_{V}=100\text{}\mathrm{ms}$ |

dead volumes | ${V}_{0}^{A/B}=0.1\text{}\ell $ |

bulk modulus | $E=12,000\text{}\mathrm{bar}$ |

supply pressure | ${p}_{S}=200\text{}\mathrm{bar}$ |

tank pressure | ${p}_{T}=20\text{}\mathrm{bar}$ |

(b) Bucket Stick Cylinder Drive | |

parameter | value |

piston diameter | ${A}_{P}=44\text{}{\mathrm{cm}}^{2}$ |

rod-side area | ${A}_{R}=28\text{}{\mathrm{cm}}^{2}$ |

cylinder stroke | $l=658\text{}\mathrm{mm}$ |

nominal flow rate | ${Q}_{N}=20\text{}\frac{\ell}{\mathrm{min}}$ |

nominal pressure drop | ${p}_{N}=5\text{}\mathrm{bar}$ |

supply pressure | ${p}_{S}=100\text{}\mathrm{bar}$ |

tank pressure | ${p}_{T}=10\text{}\mathrm{bar}$ |

## References

- Merritt, H.E. Hydraulic Control Systems; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Reiners, E.A.; Ufheil, S.T. Independent Metering Valve Assembly for Multiple Hydraulic Load Functions. U.S. Patent 2002/0148223 A1, 19 July 2005. [Google Scholar]
- Kleitsch, A.J.; Ma, P.; Brinkman, J.L.; Sorokin, M. Hydraulic System including Independent Metering Valve with Flowsharing. U.S. Patent 2016.0312807A1, 28 November 2017. [Google Scholar]
- Shenouda, A. Quasi-Static Hydraulic Control Systems and Energy Savings Potential Using Independent Metering Four-Valve AssemblyConfiguration. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2006. [Google Scholar]
- Shenouda, A.; Book, W. Optimal Mode Switching for a Hydraulic Actuator Controlled with Four-Valve Independent Metering Configuration. Int. J. Fluid Power
**2008**, 9, 35–43. [Google Scholar] [CrossRef] - Abuowda, K.; Noroozi, S.; Dupac, M.; Godfrey, P. Model Based Driving Analysis for A novel Stepped Rotary Flow Control Valve. IFAC-PapersOnLine
**2019**, 52, 549–554. [Google Scholar] [CrossRef] - Abuowda, K.; Okhotnikov, I.; Noroozi, S.; Godfrey, P.; Dupac, M. A review of electrohydraulic independent metering technology. ISA Trans.
**2020**, 98, 364–381. [Google Scholar] [CrossRef] [PubMed] - Liu, W.; Li, Y.; Li, D. Review on Inlet/Outlet Oil Coordinated Control for Electro-Hydraulic Power Mechanism under Sustained Negative Load. Appl. Sci.
**2018**, 8, 886. [Google Scholar] [CrossRef] - Ahamad, M.; Dinh, Q.T.; Nahian, S.A.; Ahn, K.K. Development of a New Generation of Independent Metering Valve Circuit for Hydraulic Boom Cylinder Control. Int. J. Autom. Technol.
**2015**, 9, 143–152. [Google Scholar] [CrossRef] - Nguyen, T.H.; Do, T.C.; Ahn, K.K. A Study on a New Independent Metering Valve for Hydraulic Boom Excavator. Appl. Sci.
**2022**, 12, 605. [Google Scholar] [CrossRef] - Wydra, M.; Geimer, M.; Weiss, B. An Approach to Combine an Independent Metering System with an Electro-Hydraulic Flow-on-Demand Hybrid-System. In Proceedings of the Linköping Electronic Conference Proceedings, Linköping, Sweden, 7–9 June 2017. [Google Scholar] [CrossRef]
- Su, W.; Ren, W.; Sun, H.; Liu, C.; Lu, X.; Hua, Y.; Wei, H.; Jia, H. Data-Based Flow Rate Prediction Models for Independent Metering Hydraulic Valve. Energies
**2022**, 15, 7699. [Google Scholar] [CrossRef] - Koivumäki, J.; Zhu, W.H.; Mattila, J. Energy-efficient and high-precision control of hydraulic robots. Control Eng. Pract.
**2019**, 85, 176–193. [Google Scholar] [CrossRef] - Li, C.; Lyu, L.; Helian, B.; Chen, Z.; Yao, B. Precision Motion Control of an Independent Metering Hydraulic System with Nonlinear Flow Modeling and Compensation. IEEE Trans. Ind. Electron.
**2021**, 69, 7088–7098. [Google Scholar] [CrossRef] - Kikuuwe, R.; Okada, T.; Yoshihara, H.; Doi, T.; Nanjo, T.; Yamashita, K. A Nonsmooth Quasi-Static Modeling Approach for Hydraulic Actuators. J. Dyn. Syst. Meas. Control
**2021**, 143, 121002. [Google Scholar] [CrossRef] - Choi, K.; Seo, J.; Nam, Y.; Kim, K.U. Energy-saving in excavators with application of independent metering valve. J. Mech. Sci. Technol.
**2015**, 29, 387–395. [Google Scholar] [CrossRef] - Linjama, M.; Huova, M.; Boström, P.; Laamanen, A.; Siivonen, L.; Morel, L.; Walden, M.; Vilenius, M. Design and Implementation of Energy Saving Digital Hydraulic System. In Proceedings of the Tenth Scandinavian International Conference on Fluid Power, SICFP’07, Tampere, Finland, 21–23 May 2007. [Google Scholar]
- Ketonen, M.; Linjama, M. Simulation study of a digital hydraulic independent metering valve system on an excavator. In Proceedings of the Linköping Electronic Conference Proceedings, Budapest, Hungary, 18–20 September 2017. [Google Scholar] [CrossRef]
- Ketonen, M.; Linjama, M. Digital Hydraulic IMV System in an Excavator - First Results. In Proceedings of the 16th Scandinavian International Conference on Fluid Power, SICFP’19, Tampere, Finland, 22–24 May 2019. [Google Scholar]
- Huova, M.; Tammisto, J.; Linjama, M. Open-loop Independent Metering Control of a Multi-DOF Forwarder Boom. Int. J. Fluid Power
**2020**, 21, 147–168. [Google Scholar] [CrossRef] - Kosean, W. Electro-Hydraulic Valve. EP1614947 (A1), 11 January 2006. [Google Scholar]
- Chung, T.S.; Lee, Y.G. Variable-Regeneration Directional Control Valve for Construction Vehicles. US5862831, 26 January 1999. [Google Scholar]

Quadr. | State | Force | Velocity | ${\mathit{V}}_{\mathit{P}\mathit{A}}$ | ${\mathit{V}}_{\mathit{A}\mathit{T}}$ | ${\mathit{V}}_{\mathit{P}\mathit{B}}$ | ${\mathit{V}}_{\mathit{B}\mathit{T}}$ | ${\mathit{A}|}_{{\mathit{Q}}_{\mathit{X}}}$ | ${\mathit{\Delta}\mathit{p}|}_{{\mathit{Q}}_{\mathit{X}}}$ |
---|---|---|---|---|---|---|---|---|---|

− | $\mathcal{O}$ | − | ${v}_{d}=0$ | 0 | 0 | 0 | 0 | − | − |

${Q}_{I}$ | ${I}_{\mathcal{R}}$ | ${p}_{T}\left({A}_{P}-{A}_{R}\right)<F<{p}_{S}\left({A}_{P}-{A}_{R}\right)$ | ${v}_{d}>0$ | $\xi $ | 0 | 1 | 0 | ${A}_{P}$ | ${p}_{S}-{p}_{A}$ |

${I}_{\mathcal{F}}$ | ${p}_{T}\left({A}_{P}-{A}_{R}\right)<F<{p}_{S}{A}_{P}-{p}_{T}{A}_{R}$ | ${v}_{d}>0$ | $\xi $ | 0 | 0 | 1 | ${A}_{P}$ | ${p}_{S}-{p}_{A}$ | |

${Q}_{II}$ | $II$ | ${p}_{T}\left({A}_{P}-{A}_{R}\right)<F<{p}_{S}{A}_{P}-{p}_{T}{A}_{R}$ | ${v}_{d}<0$ | 0 | $\xi $ | 0 | 1 | ${A}_{P}$ | ${p}_{A}-{p}_{T}$ |

${Q}_{III}$ | $III$ | $-{p}_{S}{A}_{R}+{p}_{T}{A}_{P}<F<{p}_{T}\left({A}_{P}-{A}_{R}\right)$ | ${v}_{d}<0$ | 0 | 1 | $\xi $ | 0 | ${A}_{R}$ | ${p}_{S}-{p}_{B}$ |

${Q}_{IV}$ | $IV$ | $-{p}_{S}{A}_{R}+{p}_{T}{A}_{P}<F<{p}_{T}\left({A}_{P}-{A}_{R}\right)$ | ${v}_{d}>0$ | 0 | 1 | 0 | $\xi $ | ${A}_{R}$ | ${p}_{B}-{p}_{T}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kogler, H.; Plöckinger, A.; Foschum, P.
Cybernetic Proportional System for a Hydraulic Cylinder Drive Using Proportional Seat-Type Valves. *Actuators* **2023**, *12*, 370.
https://doi.org/10.3390/act12100370

**AMA Style**

Kogler H, Plöckinger A, Foschum P.
Cybernetic Proportional System for a Hydraulic Cylinder Drive Using Proportional Seat-Type Valves. *Actuators*. 2023; 12(10):370.
https://doi.org/10.3390/act12100370

**Chicago/Turabian Style**

Kogler, Helmut, Andreas Plöckinger, and Paul Foschum.
2023. "Cybernetic Proportional System for a Hydraulic Cylinder Drive Using Proportional Seat-Type Valves" *Actuators* 12, no. 10: 370.
https://doi.org/10.3390/act12100370