Advances in Flow Control by Means of Synthetic Jet Actuators
1. Introduction
2. Results and Discussion
- flow control on aerodynamic surfaces;
- cooling of heated areas.
2.1. Design Aspects
2.2. Flow Control Applications
2.3. Heat Transfer Enhancement
2.4. Summary of Contributions
3. Conclusions
Data Availability Statement
Conflicts of Interest
References
- Cattafesta, L.; Sheplak, M. Actuators for active flow control. Annu. Rev. Fluid Mech. 2011, 43, 247–272. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, K.; Mittal, R. Synthetic Jets: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group LCC: Abingdon, UK, 2015. [Google Scholar]
- Girfoglio, M.; Greco, C.; Chiatto, M.; de Luca, L. Modelling of efficiency of synthetic jet actuators. Sens. Actuators A Phys. 2015, 233, 512–521. [Google Scholar] [CrossRef]
- de Luca, L.; Girfoglio, M.; Chiatto, M.; Coppola, G. Scaling properties of resonant cavities driven by piezo-electric actuators. Sens. Actuators A Phys. 2016, 247, 465–474. [Google Scholar] [CrossRef]
- McDonald, P.; Persoons, T. Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow. Appl. Sci. 2017, 7, 1166. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Crowther, W.; Nabawy, M. Development of Valveless Resonant Micropumps for Liquid Applications. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 0580. [Google Scholar] [CrossRef]
- Chaudhari, M.; Puranik, B.; Agrawal, A. Multiple orifice synthetic jet for improvement in impingement heat transfer. Int. J. Heat Mass Transf. 2011, 54, 2056–2065. [Google Scholar] [CrossRef]
- Tan, X.M.; Zhang, J.Z. Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator. Exp. Therm. Fluid Sci. 2013, 48, 134–146. [Google Scholar] [CrossRef]
- Chiatto, M.; Marchitto, L.; Valentino, G.; de Luca, L. Influence of piezo-driven synthetic jet on water spray behavior. At. Sprays 2017, 27, 691–706. [Google Scholar] [CrossRef]
- Krieg, M.; Mohseni, K. Thrust characterization of a bioinspired vortex ring thruster for locomotion of underwater robots. IEEE J. Ocean. Eng. 2008, 33, 123–132. [Google Scholar] [CrossRef]
- Xia, X.; Mohseni, K. Transitional region of a round synthetic jet. Phys. Rev. Fluids 2018, 3, 011901. [Google Scholar] [CrossRef]
- Wang, L.; Feng, L.H.; Wang, J.J.; Li, T. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment. Exp. Fluids 2018, 59, 91. [Google Scholar] [CrossRef]
- Kral, L.; Donovan, J.; Cain, A.; Cary, A. Numerical simulation of synthetic jet actuators. AIAA Pap. 1997, 1824, 1997. [Google Scholar]
- Rizzetta, D.; Visbal, M.; Stanek, M. Numerical Investigation of Synthetic-Jet Flow Fields. AIAA J. 1999, 37, 919–927. [Google Scholar] [CrossRef]
- Kotapati, R.; Mittal, R.; Cattafesta, L. Numerical study of a transitional synthetic jet in quiescent external flow. J. Fluid Mech. 2007, 581, 287–321. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Cadieux, F.; Mittal, R.; Deem, E.; Cattafesta, L. Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble. Phys. Rev. Fluids 2018, 3, 033901. [Google Scholar] [CrossRef]
- Dandois, J.; Garnier, E.; Sagaut, P. Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 2007, 574, 25–58. [Google Scholar] [CrossRef]
- Mahalingam, R.; Glezer, A. Design and thermal characteristics of a synthetic jet ejector heat sink. J. Electron. Packag. Trans. ASME 2005, 127, 172–177. [Google Scholar] [CrossRef]
- Panda, S.; Gohil, T.B.; Arumuru, V. Evolution of flow structure from a coaxial synthetic jet. Int. J. Mech. Sci. 2022, 231, 107588. [Google Scholar] [CrossRef]
- Hu, D.; He, L.; Hu, R.; Hou, Y.; Liu, Y.; Cheng, G. Performance analysis of synthetic jet micropump based on double piezoelectric actuators. J. Micromech. Microeng. 2022, 32, 095009. [Google Scholar] [CrossRef]
- He, Y.; Wang, J.; Chen, X.; Miao, H.; Wu, Y.; Zhang, Z. Experimental Study on Characteristics of Plasma Synthetic Jet Actuators with Different Insulating Materials. IEEE Trans. Plasma Sci. 2022, 50, 3583–3592. [Google Scholar] [CrossRef]
- Palumbo, A.; Chiatto, M.; de Luca, L. Measurements versus numerical simulations for slotted synthetic jet actuator. Actuators 2018, 7, 59. [Google Scholar] [CrossRef]
- Watson, M.; Jaworski, A.; Wood, N. A study of synthetic jets from rectangular and dual-circular orifices. Aeronaut. J. 2003, 107, 427–434. [Google Scholar] [CrossRef]
- Riazi, H.; Ahmed, N. Numerical investigation on two-orifice synthetic jet actuators of varying orifice spacing and diameter. In Proceedings of the 29th AIAA Applied Aerodynamics Conference 2011, Honolulu, HI, USA, 27 June 2011–30 June 2011. [Google Scholar] [CrossRef]
- Chiatto, M.; Capuano, F.; de Luca, L. Numerical and experimental characterization of a double-orifice synthetic jet actuator. Meccanica 2018, 53, 2883–2896. [Google Scholar] [CrossRef]
- Palumbo, A.; de Luca, L. Experimental and CFD Characterization of a Double-Orifice Synthetic Jet Actuator for Flow Control. Actuators 2021, 10, 326. [Google Scholar] [CrossRef]
- Lu, L.; Li, D.; Zhang, Z.; Yang, Y.; Liu, D.; Tao, Y.; Lu, B. Design of an Acoustic Synthetic Jet Actuator for Flow Control. Actuators 2022, 11, 300. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, Z.; Deng, X.; Wang, L.; Xia, Z. Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator. Actuators 2022, 11, 205. [Google Scholar] [CrossRef]
- Jankee, G.K.; Ganapathisubramani, B. Scalings for rectangular synthetic jet trajectory in a turbulent boundary layer. J. Fluid Mech. 2021, 915, A57. [Google Scholar] [CrossRef]
- Jankee, G.K.; Ganapathisubramani, B. Interaction and vectoring of parallel rectangular twin jets in a turbulent boundary layer. Phys. Rev. Fluids 2021, 6, 044701. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Chang, J. Investigations on the Interfering Factor of Single Synthetic Jet Actuator on Improving the Efficiency of Wing Control Surface. J. Appl. Fluid Mech. 2022, 15, 1801–1813. [Google Scholar] [CrossRef]
- Itsariyapinyo, P.; Sharma, R.N. Experimental Study of a NACA0015 Circulation Control Airfoil Using Synthetic Jet Actuation. AIAA J. 2022, 60, 1612–1629. [Google Scholar] [CrossRef]
- Tousi, N.; Bergadà, J.; Mellibovsky, F. Large Eddy Simulation of optimal Synthetic Jet Actuation on a SD7003 airfoil in post-stall conditions. Aerosp. Sci. Technol. 2022, 127, 107679. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, Z.; Deng, X.; Zhang, J.; Liu, J.; Li, S. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout. Aerosp. Sci. Technol. 2023, 132, 108043. [Google Scholar] [CrossRef]
- Rathay, N.; Amitay, M. Interaction of synthetic jets with a massively separated three-dimensional flow field. Phys. Rev. Fluids 2022, 7, 034702. [Google Scholar] [CrossRef]
- Rice, T.T.; Taylor, K.; Amitay, M. Pulse modulation of synthetic jet actuators for control of separation. Phys. Rev. Fluids 2021, 6, 093902. [Google Scholar] [CrossRef]
- Ceglia, G.; Chiatto, M.; Greco, C.S.; De Gregorio, F.; Cardone, G.; de Luca, L. Active control of separated flow over 2D back-facing ramp by an array of finite-span slotted synthetic jets. Exp. Therm. Fluid Sci. 2021, 129, 110475. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Z.; Li, Z.; Geng, X.; Zhang, C.; Sun, Q. Study on propagation mechanisms of the actuations generated by plasma synthetic jet actuator in a supersonic flow. Aerosp. Sci. Technol. 2022, 126, 107644. [Google Scholar] [CrossRef]
- Xie, W.; Luo, Z.; Hou, L.; Zhou, Y.; Liu, Q.; Peng, W. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow. Phys. Fluids 2021, 33, 096104. [Google Scholar] [CrossRef]
- Palumbo, A.; Semeraro, O.; Robinet, J.C.; de Luca, L. Boundary layer transition induced by low-speed synthetic jets. Phys. Fluids 2022, 34, 124113. [Google Scholar] [CrossRef]
- Antošová, Z.; Trávníček, Z. Control of a round jet intermittency and transition to turbulence by means of an annular synthetic jet. Actuators 2021, 10, 185. [Google Scholar] [CrossRef]
- Xie, F.; Pérez-Muñoz, J.D.; Qin, N.; Ricco, P. Drag reduction in wall-bounded turbulence by synthetic jet sheets. J. Fluid Mech. 2022, 941, A63. [Google Scholar] [CrossRef]
- Lu, Y.; Qu, Y.; Wang, J.; Wang, J. Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal. Appl. Math. Mech. 2022, 43, 1569–1584. [Google Scholar] [CrossRef]
- Farrell, G.; Gibbons, M.; Persoons, T. Combined Passive/Active Flow Control of Drag and Lift Forces on a Cylinder in Crossflow Using a Synthetic Jet Actuator and Porous Coatings. Actuators 2022, 11, 201. [Google Scholar] [CrossRef]
- Ahmed, D.; Morgans, A. Nonlinear feedback control of bimodality in the wake of a three-dimensional bluff body. Phys. Rev. Fluids 2022, 7, 084401. [Google Scholar] [CrossRef]
- Hu, X.; Morgans, A.S. Attenuation of the unsteady loading on a high-rise building using feedback control. J. Fluid Mech. 2022, 944, A10. [Google Scholar] [CrossRef]
- Paris, R.; Beneddine, S.; Dandois, J. Robust flow control and optimal sensor placement using deep reinforcement learning. J. Fluid Mech. 2021, 913, A25. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Reinforcement-learning-based control of confined cylinder wakes with stability analyses. J. Fluid Mech. 2022, 932, A44. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, S.; Yin, H. Active flow control using deep reinforcement learning with time delays in Markov decision process and autoregressive policy. Phys. Fluids 2022, 34, 053602. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Q.; Zhou, Q.; Liu, Y. Active control of flow past an elliptic cylinder using an artificial neural network trained by deep reinforcement learning. Appl. Math. Mech. 2022, 43, 1921–1934. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Mei, Y.F.; Aubry, N.; Chen, Z.; Wu, P.; Wu, W.T. Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil. Phys. Fluids 2022, 34, 033606. [Google Scholar] [CrossRef]
- Wang, L.; Feng, L.h.; Xu, Y.; Xu, Y.; Wang, J.j. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. Int. J. Heat Mass Transf. 2022, 190, 122760. [Google Scholar] [CrossRef]
- Gil, P.; Wilk, J. Experimental investigations of different loudspeakers applied as synthetic jet actuators. Actuators 2021, 10, 224. [Google Scholar] [CrossRef]
- Gil, P. Flow and heat transfer characteristics of single and multiple synthetic jets impingement cooling. Int. J. Heat Mass Transf. 2023, 201, 123590. [Google Scholar] [CrossRef]
- Kang, Y.; Luo, Z.b.; Deng, X.; Cheng, P.; Peng, C.; He, W.; Xia, Z.x. Numerical study of a liquid cooling device based on dual synthetic jets actuator. Appl. Therm. Eng. 2023, 219, 119691. [Google Scholar] [CrossRef]
- Dutta, S.; Shantanu. Effects of the synthetic jet on the flow field and heat transfer over a surface-mounted square rib. Exp. Therm. Fluid Sci. 2022, 139, 110708. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.Y.; Wang, J.J. Experimental investigation on the impingement of synthetic jet vortex rings onto a porous wall. Phys. Fluids 2021, 33, 035140. [Google Scholar] [CrossRef]
- Chen, C.; Gao, D.; Chen, W.L. Experimental investigation on the impingement of synthetic jet vortex rings on a spherical wall. Phys. Rev. Fluids 2022, 7, 044703. [Google Scholar] [CrossRef]
Numerical | Experimental | |
---|---|---|
Design aspects | ||
Innovative configurations | [19] | [20,21] |
Multi-orifice actuators | [26] | [27,28] |
Flow control applications | ||
SJ interaction with a boundary layer | [40] | [29,30] |
Airfoil and wing configurations | [31,33,34] | [32,35,36] |
Back-facing ramp model | [37] | |
Supersonic flows | [39] | [38] |
Control of a continuous jet | [41] | |
Drag-reduction method | [42] | |
Flow behind cylinders | [43,44] | |
Deep reinforcement learning | [47,48,49,50,51] | |
Other applications | [45,46] | |
Impinging applications | ||
Heat transfer enhancement | [55] | [52,53,54,56] |
Porous and spherical walls | [57,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiatto, M.; de Luca, L. Advances in Flow Control by Means of Synthetic Jet Actuators. Actuators 2023, 12, 33. https://doi.org/10.3390/act12010033
Chiatto M, de Luca L. Advances in Flow Control by Means of Synthetic Jet Actuators. Actuators. 2023; 12(1):33. https://doi.org/10.3390/act12010033
Chicago/Turabian StyleChiatto, Matteo, and Luigi de Luca. 2023. "Advances in Flow Control by Means of Synthetic Jet Actuators" Actuators 12, no. 1: 33. https://doi.org/10.3390/act12010033
APA StyleChiatto, M., & de Luca, L. (2023). Advances in Flow Control by Means of Synthetic Jet Actuators. Actuators, 12(1), 33. https://doi.org/10.3390/act12010033