Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Articles Selection Protocol
- The study applies soft robotics technology to the development of a soft glove;
- The study presents at least one of the following aspects: the design, modeling and/or optimization of the soft glove, the control strategy and approach, a clinical study or a pilot study, the design of soft actuators or soft sensors for a soft glove;
- The soft glove is intended for rehabilitation, ADLs assistance, as a haptic device or to control a robotic device;
- The study depicts soft glove fingers and/or wrist actuation and/or sensing.
- The device contains linkages or, more in general, rigid mechanical elements which impose physical restraints on joint motion;
- The study treated aspects related to soft gloves other than those stated in the inclusion criteria (as, for example: soft glove contamination during tissue surgeries, tactile perception investigation, therapists’ evaluation of the perceived usability and utility of wearable soft robotic);
- The paper language is other than English.
2.2. Taxonomy
2.3. Data Analysis
3. Prospective Review
4. Analytical Review
4.1. Soft Gloves Analysis Based on Applications
4.1.1. Rehabilitative and Assistive Soft Gloves
4.1.2. Rehabilitative Systems for Bilateral Training and Mirror Theraphy
4.1.3. Haptic Soft Gloves
4.2. Soft Gloves Actuation
4.3. Soft Gloves Control
4.4. Clinical Studies or Trials
Reference | Clinical Scales, Tests and Functional Tasks | User’s Forces Assessment | Other Outcomes | Device Usability and Acceptance | Setup Time (don and doff) | ||||
---|---|---|---|---|---|---|---|---|---|
General | FM | JTHFT | General | Max. Pinch | Max. Handgrip | ||||
Kottink_2022 [105] | x | x (Jamar dynamometer) | user experience, measured by self-reported grading (1–10) of ease of donning, ease of use and support from glove | ||||||
Nasrallah_2021 [108] | functional magnetic resonance imaging fMRI | ||||||||
Jiryaei_2021 [24] | ROM of PIP joint for index and middle fingers (standard plastic finger goniometer) | questionnaire of satisfaction (six items) | |||||||
Palmcrantz_2020 [109] | x (modified Rankin Scale (mRS), Barthel Index (BI), Modified Ashworth scale, NeuroFlexor method, Box and Block Test (BBT), Action Research Arm Test (ARAT)) | x | x (digital hand dynamometer) | active range of wrist movement (goniometer), qualitative data for everyday activity performance (weekly interviews) | perceived usability, with semistructured interview | ||||
Nuckols_2020 [104] | x (Modified Ashworth Scale (MAS) for flexors of elbow, wrist and finger, and extensors of wrist and finger) | x (sEMG of the fingers’ flexors and extensors) | range of motion (ROM)(as MCP and PIP angles, by analysis of videos), timed grip termination | ||||||
Osuagwu_2020 [103] | x (Toronto Rehabilitation Institute hand function test (TRI-HFT), modified Ashworth scale (MAS)) | x (pinchmeter dynamometry) | QUEST (Quebec user evaluation of satisfaction with assistive technology) | ||||||
Correia_2020 [110] | x | x (flexible pressure sensor mat) | x (flexible pressure sensor mat) | active range of motion (ROM) of the fingers for the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the index finger, and for the MCP joint of the thumb (goniometer) | usability questionnaire (8 items) | x (and whether assistance was needed) | |||
VanOmmeren_2019 [106] | Reaching | x (Jamar hydraulic hand dynamometer) | performance time, 3D motion analysis-related quantities: effect of the glove on movement duration of movement phases, movement smoothness, trunk displacement, peak hand velocity, hand opening and joint excursion of the elbow and wrist | ||||||
Radder_2018 [100] | x | performance time, qualitative aspects of task execution | SUS, Intrinsic Motivation Inventory (IMI) | ||||||
VanOmmeren_2018 [107] | x | x | x | SUS | |||||
Cappello_2018 [39] | Toronto Rehabilitation Institute Hand Function Test (TRI-HFT), with 19 object manipulations | x (required by TRI-HFT) | |||||||
Prange-Lasonder_2017 [101] | x | x | x | x (dynamometer) | SUS | ||||
Radder_2017 [98] | reaching and grasping a cup/knife and using it to pour a drink/slice some food | x | SUS |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Classification Tables
Reference ID | Document Type | Application Field af | Soft Glove Function sgf | Document Focus f | Soft Glove Type sgt | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | mtbs | 3 | 4 | 5 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
Sierotowicz_2022 [53] | A | h | h | x | x | x | ||||||||||||||
Rakhtala_2022 [114] | A | h | x | x | d | x | ||||||||||||||
Tang_2022 [23] | A | h | x | x | x | x | x | |||||||||||||
Kottink_2022 [105] | BC | h | x | x | x | |||||||||||||||
Quach_2022 [14] | CP | h | h | x | x | x | ||||||||||||||
Nasrallah_2021 [108] | A | h | r | x | x | x | ||||||||||||||
Ivanescu_2021 [115] | A | h | x | x | x | |||||||||||||||
Wang_2021 [83] | A | h | x | x | ||||||||||||||||
Ahmadjou_2021 [95] | A | h | x | x | x | |||||||||||||||
Terrile_2021 [92] | A # | h | x | d | x | x | ||||||||||||||
Cao_2021 [88] | CP | h | x | d | x | |||||||||||||||
Jiryaei_2021 [24] | A | h | x | x | x | x | ||||||||||||||
Palacios_2021 [17] | CP | h | x | x | x | x | x | x | x | |||||||||||
Simons_2021 [72] | A # | h | x | x | ||||||||||||||||
Feng_2021 [89] | A | h | x | x | x | |||||||||||||||
Tsai_2021 [116] | A | h | x | x | x | |||||||||||||||
El-Agroudy_2021 [117] | A # | h | x | m,o | x | |||||||||||||||
Chen_2021a [26] | A | h | r | h | x | x | x | x | ||||||||||||
Chiaradia_2021 [16] | A # | w | x | x | x | |||||||||||||||
Chen_2021b [54] | A # | h | r | x | x | x | ||||||||||||||
Do_2021 [25] | CP | h | x | x | x | |||||||||||||||
Wanasinghe_2021 [118] | A # | x | x | x | ||||||||||||||||
Setiawan_2021 [27] | A # | x | x | x | x | x | ||||||||||||||
Jumphoo_2021 [119] | A # | h | x | x | ||||||||||||||||
Du_2020 [28] | CP | h,w | x | x | x | |||||||||||||||
Cheng_2020 [120] | A | h | x | x | x | |||||||||||||||
El-Agroudy_2020 [121] | CP # | h | x | x | x | |||||||||||||||
Nuckols_2020 [104] | CP | h | x | x | x | x | ||||||||||||||
Nassour_2020 [71] | A | x | x | x | x | |||||||||||||||
Gerges_2020 [66] | CP | h | r | x | x | x | x | |||||||||||||
Baik_2020b [12] | A # | h | x | x | x | |||||||||||||||
Goh_2020 [122] | A | h | x | x | x | |||||||||||||||
Guo_2020 [123] | A | h | x | m,o | x | |||||||||||||||
Takahashi_2020 [29] | A | x | x | x | x | |||||||||||||||
Ge_2020 [51] | A | h | x | d,m | x | |||||||||||||||
Chen_2020a [65] | CP | h | a | x | x | x | ||||||||||||||
Wang_2020 [78] | A | x | x | m,o | x | |||||||||||||||
Kavindya_2020 [124] | CP | h | x | x | x | |||||||||||||||
Hu_2020 [33] | CP | h | x | d | x | |||||||||||||||
Li_2020 [30] | CP | h | r | x | x | x | x | |||||||||||||
Correia_2020 [110] | A | h | x | x | x | |||||||||||||||
Gerez_2020 [32] | CP | h | h | x | x | x | ||||||||||||||
Skaramagkas_2020 [125] | CP | h | x | x | x | |||||||||||||||
Awantha_2020 [126] | CP | h | x | x | x | |||||||||||||||
Burns_2020 [19] | BC | h | h | x | x | x | ||||||||||||||
Osuagwu_2020 [103] | A # | h | x | x | x | |||||||||||||||
Palmcrantz_2020 [109] | A # | h | x | x | x | |||||||||||||||
Hameed_2020 [127] | CP | h | h | x | x | x | ||||||||||||||
Radder_2020 [128] | A | x | ||||||||||||||||||
Setiawan_2020 [129] | A | x | x | |||||||||||||||||
Chen_2020b [31] | A # | h | h | x | x | d | x | |||||||||||||
Koizumi_2020 [60] | CP | x | x | x | d | x | ||||||||||||||
Ullah_2019 [34] | CP | x | x | x | x | x | x | |||||||||||||
Kim_2019 [73] | A # | x | x | x | x | |||||||||||||||
Song_2019 [75] | A # | x | x | x | x | x | x | |||||||||||||
Ismail_2019 [35] | CP | h | x | x | x | |||||||||||||||
Glauser_2019a [74] | CP # | h | x | x | x | |||||||||||||||
Takahashi_2019a [61] | CP | x | x | x | ||||||||||||||||
Trott_2019 [79] | CP | x | x | x | x | |||||||||||||||
Kaneishi_2019 [93] | CP | x | x | x | x | |||||||||||||||
Wang_2019a [52] | A | x | x | d,m | x | x | ||||||||||||||
Zhou_2019 [130] | CP | h | x | x | x | |||||||||||||||
Hameed_2019 [131] | CP # | x | x | x | x | |||||||||||||||
Liu_2019 [36] | CP | x | x | x | x | |||||||||||||||
Heung_2019 [82] | A | h | x | x | x | |||||||||||||||
Kang_2019 [37] | A | h | x | x | x | |||||||||||||||
Thalia_2019 * [132] | CP | h | x | x | ||||||||||||||||
Takahashi_2019b [133] | CP | x | x | x | x | |||||||||||||||
Wang_2019b [38] | A | h,w | x | x | x | |||||||||||||||
Souhail_2019 [15] | A | h | x | x | x | |||||||||||||||
Guo_2019 [134] | CP | h | ||||||||||||||||||
VanOmmeren_2019 [106] | A # | h | h | x | x | |||||||||||||||
Sun_2019 [85] | A | x | x | d | x | |||||||||||||||
Xiloyannis_2019 [135] | BC # | h | x | x | ||||||||||||||||
Osuagwu_2019 [102] | BC | h | x | x | ||||||||||||||||
Chua_2019 * [136] | A | x | x | m | x | |||||||||||||||
Kim_2018 [76] | CP | x | x | x | x | |||||||||||||||
Ha_2018 [94] | CP | x | x | |||||||||||||||||
Mohammadi_2018 [41] | CP | h | h | x | d | x | ||||||||||||||
VanOmmeren_2018 * [107] | CP | h | x | |||||||||||||||||
Jiralerspong_2018 [137] | CP | h | x | d | x | |||||||||||||||
Jiang_2018 [84] | CP | h | x | d | x | |||||||||||||||
Cappello_2018 [39] | A # | h | x | x | x | |||||||||||||||
Zhang_2018 [138] | CP | x | x | x | x | |||||||||||||||
Wang_2018 [139] | CP | x | x | d | ||||||||||||||||
Sadeghian_2018 [96] | CP | x | x | x | x | |||||||||||||||
Chatterjee_2018 [140] | CP | h | x | m | ||||||||||||||||
Gunawardane_2018 [18] | CP | x | x | x | ||||||||||||||||
Radder_2018 [100] | A # | h | h | x | x | x | ||||||||||||||
Yi_2018 [40] | A | h | h | x | x | x | ||||||||||||||
Kim_2017 [42] | CP | h | x | x | x | |||||||||||||||
Ang_2017 [43] | CP | x | x | x | x | |||||||||||||||
Yao_2017 [44] | A | h | x | x | ||||||||||||||||
Yap_2017a [141] | A # | h | x | x | x | |||||||||||||||
Prange-Lasonder_2017 [101] | CP | h | x | x | x | |||||||||||||||
Yap_2017b [142] | CP | h | x | d | x | |||||||||||||||
Jamil_2017 [143] | CP | x | x | d | x | |||||||||||||||
Jiang_2017 [87] | CP | h | x | x | x | |||||||||||||||
Yap_2017c [67] | A | h | h | r,a | x | x | x | |||||||||||||
Yap_2017d [45] | A | h | x | x | x | |||||||||||||||
Low_2017 [144] | A | x | x | x | ||||||||||||||||
Popov_2017 [145] | A | h | x | x | x | |||||||||||||||
Jadhav_2017 [77] | CP | x | x | x | x | |||||||||||||||
Haghshenas-Jaryani_2017 * [146] | CP | h | x | |||||||||||||||||
Radder_2017 [98] | BC | x | x | |||||||||||||||||
Yi_2016 [147] | CP | h | x | x | x | |||||||||||||||
Shen_2016 [80] | CP # | x | x | x | x | |||||||||||||||
Yap_2016a * [148] | A | h | x | x | x | |||||||||||||||
Biggar_2016 [149] | A # | h | x | x | x | |||||||||||||||
Xiloyannis_2016 [150] | CP # | h | x | d | x | |||||||||||||||
Haghshenas-Jaryani_2016 [47] | CP | h | x | x | x | |||||||||||||||
Yap_2016c [151] | CP | x | x | x | ||||||||||||||||
Cao_2016 [46] | CP | x | r | x | x | x | x | |||||||||||||
Radder_2016 * [97] | CP # | h | x | x | ||||||||||||||||
Polygerinos_2015a [48] | CP # | h | x | x | x | |||||||||||||||
Yap_2015 [152] | CP | x | x | x | x | |||||||||||||||
Polygerinos_2015b [59] | CP | h | x | x | x | |||||||||||||||
Polygerinos_2015c [20] | CP | h | x | x | x | |||||||||||||||
In_2015 [153] | A | x | x | x | x | |||||||||||||||
Michaud_2015 [154] | CP # | x | x | x | x | |||||||||||||||
Hammond_2014 [81] | CP | x | x | x | x | |||||||||||||||
Delph_2013 [49] | CP # | h | x | x | x | |||||||||||||||
Polygerinos_2013 [58] | CP | h | x | d | x | |||||||||||||||
Kadowaki_2011 [50] | A # | h | x | x | x | |||||||||||||||
Kuusisto_2009 * [155] | CP | h | x | x | x | x | x |
References
- Bütefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K.H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 1995, 130, 59–68. [Google Scholar] [CrossRef]
- Sale, P.; Lombardi, V.; Franceschini, M. Hand robotics rehabilitation: Feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res. Treat. 2012, 2012, 820931. [Google Scholar] [CrossRef] [PubMed]
- Lum, P.S.; Burgar, C.G.; Shor, P.C.; Majmundar, M.; Van der Loos, M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Norouzi-Gheidari, N.; Archambault, P.S.; Fung, J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 2012, 49, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.K.; Wittrup-Jensen, K.U.; Lolk, A.; Andersen, K.; Kragh-Sørensen, P. Ability to perform activities of daily living is the main factor affecting quality of life in patients with dementia. Health Qual. Life Outcomes 2004, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Colombo, P.; Taveggia, G.; Chiesa, D.; Penati, R.; Tiboni, M.; Armas, L.D.E.; Casale, R. Lower Tinetti scores can support an early diagnosis of spatial neglect in post-stroke patients. Eur. J. Phys. Rehabil. Med. 2019, 55, 722–727. [Google Scholar] [CrossRef]
- Du Plessis, T.; Djouani, K.; Oosthuizen, C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics 2021, 10, 40. [Google Scholar] [CrossRef]
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef]
- Chu, C.Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil. 2018, 15, 9. [Google Scholar] [CrossRef]
- Yin, J.; Hinchet, R.; Shea, H.; Majidi, C. Wearable Soft Technologies for Haptic Sensing and Feedback. Adv. Funct. Mater. 2021, 31, 2007428. [Google Scholar] [CrossRef]
- Amici, C.; Ragni, F.; Ghidoni, M.; Fausti, D.; Bissolotti, L.; Tiboni, M. Multi-sensor validation approach of an end-effector-based robot for the rehabilitation of the upper and lower limb. Electronics 2020, 9, 1751. [Google Scholar] [CrossRef]
- Baik, S.; Park, S.; Park, J. Haptic Glove Using Tendon-Driven Soft Robotic Mechanism. Front. Bioeng. Biotechnol. 2020, 8, 541105, Corrigendum in Front. Bioeng. Biotechnol. 2020, 8, 10–11. [Google Scholar] [CrossRef]
- Shahid, T.; Gouwanda, D.; Nurzaman, S.G.; Gopalai, A.A. Moving toward soft robotics: A decade review of the design of hand exoskeletons. Biomimetics 2018, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Quach, B.M.; Van Toi, V.; Pham, H.T.T. Design of a soft robotic glove for hand rehabilitation based on pneumatic network method and low cost electro-pneumatic device. In Proceedings of the 8th International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh, Vietnam, 27–29 June 2018; Springer: Cham, Switzerland, 2022; Volume 85, pp. 101–111. [Google Scholar] [CrossRef]
- Souhail, A.; Vessakosol, P. Low cost soft robotic gloves for at-home rehabilitation and daily living activities. J. Autom. Mob. Robot. Intell. Syst. 2019, 13, 14–26. [Google Scholar] [CrossRef]
- Chiaradia, D.; Tiseni, L.; Xiloyannis, M.; Solazzi, M.; Masia, L.; Frisoli, A. An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove. Front. Robot. AI 2021, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Palacios, P.; Cornejo, J.; Rivera, M.V.; Napan, J.L.; Castillo, W.; Ticllacuri, V.; Reina, A.D.; Chaves-Jimenez, A.; Jamanca-Lino, G.; Chavez, J.C. Biomechatronic embedded system design of sensorized glove with soft robotic hand exoskeleton used for rover rescue missions on mars. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021. [Google Scholar] [CrossRef]
- Gunawardane, P.D.; Medagedara, N.T. Comparison of hand gesture inputs of leap motion controller & data glove into a soft finger. In Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS 2017), Ottawa, ON, Canada, 5–7 October 2017; 5–7 October 2017; pp. 62–68. [Google Scholar] [CrossRef]
- Burns, M.K.; Vinjamuri, R. Design of a Soft Glove-Based Robotic Hand Exoskeleton with Embedded Synergies; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–87. [Google Scholar] [CrossRef]
- Polygerinos, P.; Galloway, K.C.; Savage, E.; Herman, M.; O’Donnell, K.; Walsh, C.J. Soft robotic glove for hand rehabilitation and task specific training. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2913–2919. [Google Scholar] [CrossRef]
- Matheus, K.; Dollar, A.M. Benchmarking grasping and manipulation: Properties of the objects of daily living. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5020–5027. [Google Scholar] [CrossRef]
- Mullerpatan, R.P.; Karnik, G.; John, R. Grip and pinch strength: Normative data for healthy Indian adults. Hand Ther. 2013, 18, 11–16. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Heung, H.L.; Shi, X.Q.; Tong, R.K.Y.; Li, Z. Probabilistic Model-Based Learning Control of a Soft Pneumatic Glove for Hand Rehabilitation. IEEE Trans. Biomed. Eng. 2022, 69, 1016–1028. [Google Scholar] [CrossRef]
- Jiryaei, Z.; Alvar, A.A.; Bani, M.A.; Vahedi, M.; Jafarpisheh, A.S.; Razfar, N. Development and feasibility of a soft pneumatic-robotic glove to assist impaired hand function in quadriplegia patients: A pilot study. J. Bodyw. Mov. Ther. 2021, 27, 731–736. [Google Scholar] [CrossRef]
- Do, P.T.; Vo, D.T.; Le, H.P. A Soft Pneumatic Robotic Glove for Hand Rehabilitation after Stroke. In Proceedings of the 2021 20th International Conference on Advanced Robotics, ICAR 2021, Ljubljana, Slovenia, 6–10 December 2021; pp. 7–12. [Google Scholar] [CrossRef]
- Chen, X.; Gong, L.; Wei, L.; Yeh, S.C.; Da Xu, L.; Zheng, L.; Zou, Z. A Wearable Hand Rehabilitation System with Soft Gloves. IEEE Trans. Ind. Inform. 2021, 17, 943–952. [Google Scholar] [CrossRef]
- Setiawan, J.D.; Ariyanto, M.; Nugroho, S.; Ismail, R.; Purbayanto, T.; Sihombing, H. Fuzzy logic control for a soft exoskeleton glove using a motor-tendon actuator [Control de lógica difusa para un guante de exoesqueleto suave que utiliza un actuador motor-tendón]. Ing. Investig. 2021, 41, 1–8. [Google Scholar] [CrossRef]
- Du, Q.; Zhao, W.; Cui, X.; Fei, Y. Design, control and testing of soft pneumatic rehabilitation glove. In Proceedings of the 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, 4–6 December 2020; pp. 50–55. [Google Scholar] [CrossRef]
- Takahashi, N.; Furuya, S.; Koike, H. Soft Exoskeleton Glove with Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance. IEEE Trans. Haptics 2020, 13, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, T.; Zhuo, Y.; He, B.; Tao, T.; Xie, J.; Xu, G. A soft robotic glove for hand rehabilitation training controlled by movements of the healthy hand. In Proceedings of the 2020 17th International Conference on Ubiquitous Robots (UR), Kyoto, Japan, 22–26 June 2020; pp. 62–67. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, X.; Yan, D.; Zhang, Z.; Gong, Y. A Composite Fabric-Based Soft Rehabilitation Glove with Soft Joint for Dementia in Parkinson’s Disease. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gerez, L.; Dwivedi, A.; Liarokapis, M. A Hybrid, Soft Exoskeleton Glove Equipped with a Telescopic Extra Thumb and Abduction Capabilities. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 9100–9106. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, J.; Yang, Y.; Li, Q.; Li, D.; Hong, J. A novel soft robotic glove with positive-negative pneumatic actuator for hand rehabilitation. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Boston, MA, USA, 6–9 July 2020; pp. 1840–1847. [Google Scholar] [CrossRef]
- Ullah, M.M.; Hafeez, U.; Shehzad, M.N.; Awais, M.N.; Elahi, H. A soft robotic glove for assistance and rehabilitation of stroke affected patients. In Proceedings of the 2019 International Conference on Frontiers of Information Technology, FIT 2019, Islamabad, Pakistan, 16–18 December 2019; pp. 110–115. [Google Scholar] [CrossRef]
- Ismail, R.; Ariyanto, M.; Hidayat, T.; Setiawan, J.D. Design of fabric-based soft robotic glove for hand function assistance. In Proceedings of the 2019 6th International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2019, Semarang, Indonesia, 23–24 September 2019. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Yu, P.; Yang, T.; Li, N.; Yang, Y.; Liu, L. A Wearable Bionic Soft Exoskeleton Glove for Stroke Patients. In Proceedings of the 8th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER 2018, Tianjin, China, 19–23 July 2018; pp. 932–937. [Google Scholar] [CrossRef]
- Kang, B.B.; Choi, H.; Lee, H.; Cho, K.J. Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System. Soft Robot. 2019, 6, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Z.; Fei, Y. Design and testing of a soft rehabilitation glove integrating finger and wrist function. J. Mech. Robot. 2019, 11, 011015. [Google Scholar] [CrossRef]
- Cappello, L.; Meyer, J.T.; Galloway, K.C.; Peisner, J.D.; Granberry, R.; Wagner, D.A.; Engelhardt, S.; Paganoni, S.; Walsh, C.J. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J. Neuroeng. Rehabil. 2018, 15, 59. [Google Scholar] [CrossRef]
- Yi, J.; Chen, X.; Wang, Z. A Three-Dimensional-Printed Soft Robotic Glove with Enhanced Ergonomics and Force Capability. IEEE Robot. Autom. Lett. 2018, 3, 242–248. [Google Scholar] [CrossRef]
- Mohammadi, A.; Lavranos, J.; Choong, P.; Oetomo, D. Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2018, Honolulu, HI, USA, 18–21 July 2018; pp. 2120–2123. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jeong, Y.J.; Jeon, H.S.; Lee, D.W.; Kim, J.I. Development of a soft robotic glove with high gripping force using force distributing compliant structures. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 3883–3890. [Google Scholar] [CrossRef]
- Ang, B.W.K.; Yeow, C.H. Print-it-Yourself (PIY) glove: A fully 3D printed soft robotic hand rehabilitative and assistive exoskeleton for stroke patients. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 1219–1223. [Google Scholar] [CrossRef]
- Yao, Z.; Linnenberg, C.; Argubi-Wollesen, A.; Weidner, R.; Wulfsberg, J.P. Biomimetic design of an ultra-compact and light-weight soft muscle glove. Prod. Eng. 2017, 11, 731–743. [Google Scholar] [CrossRef]
- Yap, H.K.; Kamaldin, N.; Lim, J.H.; Nasrallah, F.A.; Goh, J.C.H.; Yeow, C.H.C.H. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 782–793. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, D. Soft robotic glove with integrated sEMG sensing for disabled people with hand paralysis. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, Qingdao, China, 3–7 December 2016; pp. 714–718. [Google Scholar] [CrossRef]
- Haghshenas-Jaryani, M.; Carrigan, W.; Nothnagle, C.; Wijesundara, M.B.J. Sensorized soft robotic glove for continuous passive motion therapy. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore, 26–29 June 2016; pp. 815–820. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.M.; Clancy, E.A.; Fischer, G.S. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Seattle, WA, USA, 24–26 June 2013. [Google Scholar] [CrossRef]
- Kadowaki, Y.; Noritsugu, T.; Takaiwa, M.; Sasaki, D.; Kato, M. Development of soft power-assist glove and control based on human intent. J. Robot. Mechatron. 2011, 23, 281–291. [Google Scholar] [CrossRef]
- Ge, L.; Chen, F.; Wang, D.; Zhang, Y.; Han, D.; Wang, T.; Gu, G. Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators for Soft Wearable Assistive Gloves. Soft Robot. 2020, 7, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fei, Y.; Pang, W. Design, Modeling, and Testing of a Soft Pneumatic Glove with Segmented PneuNets Bending Actuators. IEEE/ASME Trans. Mechatron. 2019, 24, 990–1001. [Google Scholar] [CrossRef]
- Sierotowicz, M.; Lotti, N.; Nell, L.; Missiroli, F.; Alicea, R.; Zhang, X.; Xiloyannis, M.; Rupp, R.; Papp, E.; Krzywinski, J.; et al. EMG-Driven Machine Learning Control of a Soft Glove for Grasping Assistance and Rehabilitation. IEEE Robot. Autom. Lett. 2022, 7, 1566–1573. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Wen, Y. A soft exoskeleton glove for hand bilateral training via surface EMG. Sensors 2021, 21, 578. [Google Scholar] [CrossRef] [PubMed]
- Serpelloni, M.; Tiboni, M.; Lancini, M.; Pasinetti, S.; Vertuan, A.; Gobbo, M.; Meccanica, I.; Brescia, U. Preliminary Study of a Robotic Rehabilitation System Driven by EMG for Hand Mirroring. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar]
- Tiboni, M.; Borboni, A.; Faglia, R.; Pellegrini, N. Robotics rehabilitation of the elbow based on surface electromyography signals. Adv. Mech. Eng. 2018, 10, 1687814018754590. [Google Scholar] [CrossRef]
- Tiboni, M.; Legnani, G.; Lancini, M.; Serpelloni, M.; Gobbo, M.; Fausti, D. ERRSE: Elbow robotic rehabilitation system with an EMG-based force control. Mech. Mach. Sci. 2018, 49, 892–900. [Google Scholar] [CrossRef]
- Polygerinos, P.; Lyne, S.; Wang, Z.; Nicolini, L.F.; Mosadegh, B.; Whitesides, G.M.; Walsh, C.J. Towards a soft pneumatic glove for hand rehabilitation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1512–1517. [Google Scholar] [CrossRef]
- Polygerinos, P.; Galloway, K.C.; Sanan, S.; Herman, M.; Walsh, C.J. EMG controlled soft robotic glove for assistance during activities of daily living. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Singapore, 11–14 August 2015; pp. 55–60. [Google Scholar] [CrossRef]
- Koizumi, S.; Chang, T.H.; Nabae, H.; Endo, G.; Suzumori, K.; Mita, M.; Saitoh, K.; Hatakeyama, K.; Chida, S.; Shimada, Y. Soft Robotic Gloves with Thin McKibben Muscles for Hand Assist and Rehabilitation. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII 2020, Honolulu, HI, USA, 12–15 January 2020; pp. 93–98. [Google Scholar] [CrossRef]
- Takahashi, N.; Takahashi, H.; Koike, H. Soft Exoskeleton Glove Enabling Force Feedback for Human-Like Finger Posture Control with 20 Degrees of Freedom. In Proceedings of the 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan, 9–12 July 22019; pp. 217–222. [Google Scholar] [CrossRef]
- Stoykov, M.E.; Lewis, G.N.; Corcos, D.M. Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabilit. Neural Repair 2009, 23, 945–953. [Google Scholar] [CrossRef]
- Yavuzer, G.; Selles, R.; Sezer, N.; Sütbeyaz, S.; Bussmann, J.B.; Köseoǧlu, F.; Atay, M.B.; Stam, H.J. Mirror Therapy Improves Hand Function in Subacute Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2008, 89, 393–398. [Google Scholar] [CrossRef]
- Sale, P.; Franceschini, M.; Mazzoleni, S.; Palma, E.; Agosti, M.; Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014, 11, 104. [Google Scholar] [CrossRef]
- Chen, X.; Gong, L.; Zheng, L.; Zou, Z. Soft Exoskeleton Glove for Hand Assistance Based on Human-machine Interaction and Machine Learning. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems, ICHMS 2020, Rome, Italy, 7–9 September 2020. [Google Scholar] [CrossRef]
- Gerges, F.; Desai, J.; Watkins, J.; Burugupally, S.P. Master-Slave Control for a Pneumatically Actuated Low Pressure Soft Robotic Glove to Facilitate Bilateral Training for Stroke Patients. In Proceedings of the 2020 23rd IEEE International Symposium on Measurement and Control in Robotics, ISMCR 2020, Budapest, Hungary, 15–17 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yap, H.K.; Khin, P.M.; Koh, T.H.; Sun, Y.; Liang, X.; Lim, J.H.; Yeow, C.H. A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients. IEEE Robot. Autom. Lett. 2017, 2, 1383–1390. [Google Scholar] [CrossRef]
- Logozzo, S.; Cristina, M.; Malvezzi, M. Tribology International Modelling the human touch: A basic study for haptic technology. Tribol. Int. 2022, 166, 107352. [Google Scholar] [CrossRef]
- Chinello, F.; Pacchierotti, C.; Malvezzi, M.; Prattichizzo, D. A Three Revolute-Revolute-Spherical wearable fingertip cutaneous device for stiffness rendering. IEEE Trans. Haptics 2017, 11, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Tiboni, M.; Filippini, A.; Amici, C. Test-Bench for the Characterization of Flexion Sensors Used in Biomechanics. Electronics 2021, 10, 2994. [Google Scholar] [CrossRef]
- Nassour, J.; Amirabadi, H.G.; Weheabby, S.; Ali, A.A.; Lang, H.; Hamker, F. A robust data-driven soft sensory glove for human hand motions identification and replication. IEEE Sens. J. 2020, 20, 12972–12979. [Google Scholar] [CrossRef]
- Simons, M.F.; Digumarti, K.M.; Le, N.H.; Chen, H.Y.; Carreira, S.C.; Zaghloul, N.S.S.; Diteesawat, R.S.; Garrad, M.; Conn, A.T.; Kent, C.; et al. B: Ionic Glove: A soft smart wearable sensory feedback device for upper limb robotic prostheses. IEEE Robot. Autom. Lett. 2021, 6, 3311–3316. [Google Scholar] [CrossRef]
- Kim, M.K.; Parasuraman, R.N.; Wang, L.; Park, Y.; Kim, B.; Lee, S.J.; Lu, N.; Min, B.C.; Lee, C.H. Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Mater. 2019, 11, 43. [Google Scholar] [CrossRef]
- Glauser, O.; Wu, S.; Panozzo, D.; Hilliges, O.; Sorkine-Hornung, O. A stretch-sensing soft glove for interactive hand pose estimation. In Proceedings of the ACM SIGGRAPH 2019 Emerging Technologies, Los Angeles, CA, USA, 28 July–1 August 2019; Volume 38. [Google Scholar] [CrossRef]
- Song, K.; Kim, S.H.; Jin, S.; Kim, S.; Lee, S.; Kim, J.S.; Park, J.M.; Cha, Y. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 2019, 9, 8988. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, D.; Oh, J.; Park, W.; Bae, J. A Novel All-in-One Manufacturing Process for a Soft Sensor System and its Application to a Soft Sensing Glove. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 7004–7009. [Google Scholar] [CrossRef]
- Jadhav, S.; Kannanda, V.; Kang, B.; Tolley, M.T.; Schulze, J.P. Soft robotic glove for kinesthetic haptic feedback in virtual reality environments. Electron. Imaging 2017, 29, 19–24. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Zhang, Y.; Liu, J.; Wen, L.; Xu, W.; Zhang, Y. A three-fingered force feedback glove using fiber-reinforced soft bending actuators. IEEE Trans. Ind. Electron. 2020, 67, 7681–7690. [Google Scholar] [CrossRef]
- Trott, R.E.; Kleinig, T.J.; Hillier, S.L.; Hobbs, D.A.; Reynolds, K.J. A modular hybrid exoskeletal-soft glove for high degree of freedom monitoring capability. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Toronto, ON, Canada, 24–28 June 2019; pp. 577–582. [Google Scholar] [CrossRef]
- Shen, Z.; Yi, J.; Li, X.; Mark, L.H.P.; Hu, Y.; Wang, Z. A soft stretchable bending sensor and data glove applications. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2016, Chicago, IL, USA, 14-18 September 2016; pp. 88–93. [Google Scholar] [CrossRef]
- Hammond, F.L.; Menguc, Y.; Wood, R.J. Toward a modular soft sensor-embedded glove for human hand motion and tactile pressure measurement. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4000–4007. [Google Scholar] [CrossRef]
- Heung, K.H.L.; Tong, R.K.Y.; Lau, A.T.H.; Li, Z. Robotic Glove with Soft-Elastic Composite Actuators for Assisting Activities of Daily Living. Soft Robot. 2019, 6, 289–304. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Zheng, H.; Li, Y.; Wang, C. Design and optimization of actuator for multi-joint soft rehabilitation glove. Ind. Robot. 2021, 48, 877–890. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Liu, P.; Jiao, X.; Ping, Z.; Xu, Z.; Li, J.; Xu, Y. Fishbone-inspired soft robotic glove for hand rehabilitation with multi-degrees-of-freedom. In Proceedings of the 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018, Livorno, Italy, 24–28 April 2018; pp. 394–399. [Google Scholar] [CrossRef]
- Sun, Z.-S.; Guo, Z.-H.; Tang, W. Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator. J. Cent. South Univ. 2019, 26, 106–119. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of Soft Fiber-Reinforced Bending Actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Que, J.; Liu, Z.; Wang, Z.; Xu, Y. Soft robotic glove for hand rehabilitation based on a novel fabrication method. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017, Macau, Macao, 5–8 December 2017; pp. 817–822. [Google Scholar] [CrossRef]
- Cao, X.; Ma, K.; Jiang, Z.; Xu, F. A Soft Robotic Glove for Hand Rehabilitation using Pneumatic Actuators with Jamming Structure. In Proceedings of the Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 4120–4125. [Google Scholar] [CrossRef]
- Feng, M.; Yang, D.; Gu, G. High-Force Fabric-Based Pneumatic Actuators with Asymmetric Chambers and Interference-Reinforced Structure for Soft Wearable Assistive Gloves. IEEE Robot. Autom. Lett. 2021, 6, 3105–3111. [Google Scholar] [CrossRef]
- Nassour, J.; Hamker, F. Enfolded Textile Actuator for Soft Wearable Robots. In Proceedings of the 2019 IEEE International Conference on Cyborg and Bionic Systems, Munich, Germany, 18–20 September 2019; pp. 17–19. [Google Scholar]
- Luo, Y.; Foshey, M. Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar]
- Terrile, S.; Miguelañez, J.; Barrientos, A. A soft haptic glove actuated with shape memory alloy and flexible stretch sensors. Sensors 2021, 21, 5278. [Google Scholar] [CrossRef] [PubMed]
- Kaneishi, D.; Matthew, R.P.; Leu, J.E.; O’Donnell, J.; Zhang, B.; Tomizuka, M.; Stuart, H. Hybrid control interface of a semi-soft assistive glove for people with spinal cord injuries. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Toronto, ON, Canada, 24–28 June 2019; pp. 132–138. [Google Scholar] [CrossRef]
- Ha, J.; Kim, D.; Jo, S. Use of deep learning for position estimation and control of soft glove. In Proceedings of the International Conference on Control, Automation and Systems, PyeongChang, Korea, 17–20 October 2018; pp. 570–574. [Google Scholar]
- Ahmadjou, A.; Sadeghi, S.; Zareinejad, M.; Talebi, H.A. A compact valveless pressure control source for soft rehabilitation glove. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2298. [Google Scholar] [CrossRef]
- Sadeghian, R.; Azizinezhad, P.; Sedigh, P.; Shahin, S.; Masouleh, M.T. Control of a four-mecanum wheeled robot with a soft-robotic glove. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017; pp. 310–314. [Google Scholar] [CrossRef]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.R.; Gaasbeek, L.; Holmberg, J.; Meyer, T.; Buurke, J.H.; Rietman, J.S. Preliminary findings of feasibility of a wearable soft-robotic glove supporting impaired hand function in daily life: A soft-robotic glove supporting adl of elderly people. In Proceedings of the ICT4AWE 2016—2nd International Conference on Information and Communication Technologies for Ageing Well and e-Health; Science and Technology Publications: Setubal, Portugal, 2016; pp. 180–185. [Google Scholar] [CrossRef]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.R.; Gaasbeek, L.; Sletta, K.; Holmberg, J.; Meyer, T.; Buurke, J.H.; Rietman, J.S. Preliminary Evaluation of a Wearable Soft-Robotic Glove Supporting Grip Strength in ADL. Biosyst. Biorobot. 2017, 15, 1245–1250. [Google Scholar] [CrossRef]
- Amici, C.; Ceresoli, F.; Gaffurini, P.; Mor, M.; Ragni, F.; Bissolotti, L. Preliminary Validation of a Device for the Upper and Lower Limb Robotic Rehabilitation. In Proceedings of the 2019 23rd International Conference on Mechatronics Technology (ICMT), Salerno, Italy, 23–26 October 2019. [Google Scholar] [CrossRef]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.R.; Melendez-Calderon, A.; Buurke, J.H.; Rietman, J.S. Feasibility of a wearable soft-robotic glove to support impaired hand function in stroke patients. J. Rehabil. Med. 2018, 50, 598–606. [Google Scholar] [CrossRef]
- Prange-Lasonder, G.B.; Radder, B.; Kottink, A.I.R.; Melendez-Calderon, A.; Buurke, J.H.; Rietman, J.S. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1401–1406. [Google Scholar] [CrossRef]
- Osuagwu, B.A.; Timms, S.; Peachment, R.; Dowie, S.; Thrussell, H.; Cross, S.; Heywood, T.; Shirley, R.; Taylor, J. Clinical trial of the soft extra muscle glove to assess orthotic and long-term functional gain following chronic incomplete tetraplegia: Preliminary functional results. Biosyst. Biorobot. 2019, 21, 385–389. [Google Scholar] [CrossRef]
- Osuagwu, B.A.C.; Timms, S.; Peachment, R.; Dowie, S.; Thrussell, H.; Cross, S.; Shirley, R.; Segura-Fragoso, A.; Taylor, J. Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury:a pilot study. J. Neuroeng. Rehabil. 2020, 17, 40. [Google Scholar] [CrossRef]
- Nuckols, K.; Hohimer, C.J.; Glover, C.; De Lucena, D.S.; Moyo, W.; Wagner, D.; Cloutier, A.; Lin, D.J.; Walsh, C.J. Effects of a Soft Robotic Glove using a High Repetition Protocol in Chronic Stroke: A Pilot Study. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, New York, NY, USA, 29 November–1 December2020; pp. 428–433. [Google Scholar] [CrossRef]
- Kottink, A.I.R.; Nikamp, C.D.M.; Buurke, J.H.; Bos, F.; van der Sluis, C.K.; van den Broek, M.; Onneweer, B.; Stolwijk-Swüste, J.M.; Brink, S.M.; Rietman, J.S.; et al. Six weeks Use of a Wearable Soft-robotic Glove During ADL: Preliminary Results of Ongoing Clinical Study. Biosyst. Biorobot. 2022, 28, 15–20. [Google Scholar] [CrossRef]
- van Ommeren, A.; Radder, B.; Kottink, A.; Buurke, J.; Prange-Lasonder, G.; Rietman, J. Quantifying upper extremity performance with and without assistance of a soft-robotic glove in elderly patients: A kinematic analysis. J. Rehabil. Med. 2019, 51, 298–306. [Google Scholar] [CrossRef]
- Van Ommeren, A.L.; Radder, B.; Buurke, J.H.; Kottink, A.I.R.; Holmberg, J.; Sletta, K.; Prange-Lasonder, G.B.; Rietman, J.S. The Effect of Prolonged Use of a Wearable Soft-Robotic Glove Post Stroke—A Proof-of-Principle. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Enschede, The Netherlands, 26–29 August 2018; pp. 445–449. [Google Scholar] [CrossRef]
- Nasrallah, F.A.; Mohamed, A.Z.; Yap, H.K.; Lai, H.S.; Yeow, C.H.C.H.; Lim, J.H. Effect of proprioceptive stimulation using a soft robotic glove on motor activation and brain connectivity in stroke survivors. J. Neural Eng. 2021, 18, 066049. [Google Scholar] [CrossRef]
- Palmcrantz, S.; Plantin, J.; Borg, J. Factors affecting the usability of an assistive soft robotic glove after stroke or multiple sclerosis. J. Rehabil. Med. 2020, 52, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.; Nuckols, K.; Wagner, D.; Zhou, Y.M.; Clarke, M.; Orzel, D.; Solinsky, R.; Paganoni, S.; Walsh, C.J. Improving Grasp Function after Spinal Cord Injury with a Soft Robotic Glove. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. The Soft Extra Muscle system for improving the grasping capability in neurological rehabilitation. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; pp. 412–417. [Google Scholar] [CrossRef]
- Formicola, R.; Ragni, F.; Borboni, A.; Amici, C. Design Process of Medical Devices for Robotic Rehabilitation: An Open Innovation-Inspired Approach. In Robotics, Machinery and Engineering Technology for Precision Agriculture; Springer: Cham, Switzerland, 2022; pp. 575–584. [Google Scholar] [CrossRef]
- Formicola, R.; Ragni, F.; Mor, M.; Bissolotti, L.; Amici, C. Design Approach of Medical Devices for Regulation Compatibility: A Robotic Rehabilitation Case Study. In Proceedings of the 7th International Conference on Information and Communication Technologies for Ageing Well and e-Health; Science and Technology Publications: Setubal, Portugal, 2021. [Google Scholar] [CrossRef]
- Rakhtala, S.M.; Ghayebi, R. Real time control and fabrication of a soft robotic glove by two parallel sensors with MBD approach. Med. Eng. Phys. 2022, 100, 103743. [Google Scholar] [CrossRef] [PubMed]
- Ivanescu, M.; Popescu, N.; Popescu, D. Delay Time Fractional-Order Model for the Soft Exoskeleton Glove Control. IEEE Trans. -Hum.-Mach. Syst. 2021, 51, 740–745. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Jhu, W.Y.; Chen, C.C.; Kao, C.H.; Chen, C.Y. Unity game engine: Interactive software design using digital glove for virtual reality baseball pitch training. Microsyst. Technol. 2021, 27, 1401–1417. [Google Scholar] [CrossRef]
- El-Agroudy, M.N.; Awad, M.I.; Maged, S.A. Soft finger modelling and co-simulation control towards assistive exoskeleton hand glove. Micromachines 2021, 12, 181. [Google Scholar] [CrossRef]
- Wanasinghe, A.T.; Awantha, W.V.I.; Kavindya, A.G.P.; Kulasekera, A.L.; Chathuranga, D.S.; Senanayake, B. A Layer Jamming Soft Glove for Hand Tremor Suppression. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2684–2694. [Google Scholar] [CrossRef]
- Jumphoo, T.; Uthansakul, M.; Duangmanee, P.; Khan, N.; Uthansakul, P. Soft robotic glove controlling using brainwave detection for continuous rehabilitation at home. Comput. Mater. Contin. 2021, 66, 961–976. [Google Scholar] [CrossRef]
- Cheng, N.; Phua, K.S.; Lai, H.S.; Tam, P.K.; Tang, K.Y.; Cheng, K.K.; Yeow, R.H.; Ang, K.K.; Guan, C.; Lim, J.H. Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke. IEEE Trans. Biomed. Eng. 2020, 67, 3339–3351. [Google Scholar] [CrossRef] [PubMed]
- El-Agroudy, M.N.; Awad, M.I.; Rehan, A.; Maged, S.A. Assistive exoskeleton hand glove using soft pneumatic actuators: Design optimization. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 973. [Google Scholar] [CrossRef]
- Goh, A.Y.; Yap, H.K.; Ramachandran, G.K.; Yeow, C.H. Application of novel graphite flex sensors in closed-loop angle feedback on a soft robotic glove for stroke rehabilitation. J. Prosthetics Orthot. 2020, 32, 272–285. [Google Scholar] [CrossRef]
- Guo, N.; Sun, Z.; Wang, X.; Yeung, E.H.K.; To, M.K.T.; Li, X.; Hu, Y. Simulation analysis for optimal design of pneumatic bellow actuators for soft-robotic glove. Biocybern. Biomed. Eng. 2020, 40, 1359–1368. [Google Scholar] [CrossRef]
- Kavindya, P.; Awantha, W.V.I.; Wanasinghe, A.T.; Kulasekera, A.L.; Chathuranga, D.S.; Senanayake, B. Evaluation of Hand Tremor Frequency among Patients in Sri Lanka using a Soft Glove. In Proceedings of the MERCon 2020—6th International Multidisciplinary Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 28–30 July 2020; pp. 301–306. [Google Scholar] [CrossRef]
- Skaramagkas, V.; Andrikopoulos, G.; Manesis, S. An Experimental Investigation of Essential Hand Tremor Suppression via a Soft Exoskeletal Glove. In Proceedings of the European Control Conference 2020, ECC 2020, St. Petersburg, Russia, 12–15 May 2020; pp. 889–894. [Google Scholar]
- Awantha, W.V.I.; Wanasinghe, A.T.; Kavindya, A.G.P.; Kulasekera, A.L.; Chathuranga, D.S. A Novel Soft Glove for Hand Tremor Suppression: Evaluation of Layer Jamming Actuator Placement. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics, RoboSoft 2020, New Haven, CT, USA, 15 May–15 July 2020; pp. 440–445. [Google Scholar] [CrossRef]
- Hameed, H.K.; Hassan, W.Z.W.; Shafie, S.; Ahmad, S.A.; Jaafar, H.; Mat, L.N.I.; Alkubaisi, Y. Identifying the best forearm muscle to control soft robotic glove system by using a single sEMG channel. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences, ASET 2020, Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar] [CrossRef]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.R.; Holmberg, J.; Sletta, K.; Van Dijk, M.; Meyer, T.; Buurke, J.H.; Rietman, J.S. The effect of a wearable soft-robotic glove on motor function and functional performance of older adults. Assist. Technol. 2020, 32, 9–15. [Google Scholar] [CrossRef]
- Setiawan, J.D.; Ariyanto, M.; Nugroho, S.; Munadi, M.; Ismail, R. A soft exoskeleton glove incorporating motor-tendon actuator for hand movements assistance. Int. Rev. Autom. Control. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Wagner, D.; Nuckols, K.; Heimgartner, R.; Correia, C.; Clarke, M.; Orzel, D.; O’Neill, C.; Solinsky, R.; Paganoni, S.; et al. Soft robotic glove with integrated sensing for intuitive grasping assistance post spinal cord injury. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 9059–9065. [Google Scholar] [CrossRef]
- Hameed, H.K.; Hassan, W.Z.W.; Shafie, S.; Ahmad, S.A.; Jaafar, H. Soft robotic glove system controlled with amplitude independent muscle activity detection algorithm by using single sEMG channel. In Proceedings of the 2018 IEEE 5th International Conference on Smart Instrumentation, Measurement and Application, ICSIMA 2018, Songkhla, Thailand, 28–30 November 2018; pp. 28–30. [Google Scholar] [CrossRef]
- Thalia, D.P.; Risangtuni, A.G. PID control for soft actuator pneumatic glove. AIP Conf. Proc. 2019, 2088, 020027. [Google Scholar] [CrossRef]
- Takahashi, N. A Novel Soft Exoskeleton Glove for Motor Skill Acquisition Similar to Anatomical Structure of Forearm Muscles. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1568–1569. [Google Scholar]
- Guo, Y.; Xu, F.; Song, Y.; Cao, X.; Meng, F. A soft robotic glove for hand rehabilitation using pneumatic actuators with variable stiffness. In International Conference on Intelligent Robotics and Applications; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; pp. 119–129. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Galli, L.; Chiaradia, D.; Frisoli, A.; Braghin, F.; Masia, L. A soft tendon-driven robotic glove: Preliminary evaluation. Biosyst. Biorobotics 2019, 21, 329–333. [Google Scholar] [CrossRef]
- Chua, M.C.H.; Lim, J.H.; Yeow, R.C.H. Design and Characterization of a Soft Robotic Therapeutic Glove for Rheumatoid Arthritis. Assist. Technol. 2019, 31, 44–52. [Google Scholar] [CrossRef]
- Jiralerspong, T.; Heung, K.H.L.; Tong, R.K.Y.; Li, Z. A Novel Soft Robotic Glove for Daily Life Assistance. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Enschede, The Netherlands, 26–29 August 2018; pp. 671–676. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wang, Z.; Wang, Y.; Wen, L.; Zhang, Y. A two-fingered force feedback glove using soft actuators. In Proceedings of the IEEE Haptics Symposium, HAPTICS, San Francisco, CA, USA, 25–28 March 2018; pp. 186–191. [Google Scholar] [CrossRef]
- Wang, B.; McDaid, A.; Aw, K.C.; Biglari-Abhari, M. Design and development of a skinny bidirectional soft glove for post-stroke hand rehabilitation. In Proceedings of the 2017 Intelligent Systems Conference, IntelliSys 2017, London, UK, 7–8 September 2017; pp. 979–987. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hore, D.; Arora, A. A wearable soft pneumatic finger glove with antagonistic actuators for finger rehabilitation. In Proceedings of the 2nd International Conference on Communication and Electronics Systems, ICCES 2017, Coimbatore, India, 19–20 October 2017; pp. 341–345. [Google Scholar] [CrossRef]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Yeow, C.H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci. 2017, 11, 547. [Google Scholar] [CrossRef]
- Yap, H.K.; Sebastian, F.; Wiedeman, C.; Yeow, C.H. Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1465–1470. [Google Scholar] [CrossRef]
- Jamil, B.; Choi, Y. Soft pneumatic glove for grasping power improvement. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017, Jeju, Koream, 28 June–1 July 2017; pp. 690–691. [Google Scholar] [CrossRef]
- Low, J.H.; Lee, W.W.; Khin, P.M.; Thakor, N.V.; Kukreja, S.L.; Ren, H.L.; Yeow, C.H. Hybrid Tele-Manipulation System Using a Sensorized 3-D-Printed Soft Robotic Gripper and a Soft Fabric-Based Haptic Glove. IEEE Robot. Autom. Lett. 2017, 2, 880–887. [Google Scholar] [CrossRef]
- Popov, D.; Gaponov, I.; Ryu, J.H. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans. Mechatron. 2017, 22, 865–875. [Google Scholar] [CrossRef]
- Haghshenas-Jaryani, M.; Nothnagle, C.; Patterson, R.M.; Bugnariu, N.; Wijesundara, M.B.J. Soft robotic rehabilitation exoskeleton (rehab glove) for hand therapy. In Proceedings of the ASME Design Engineering Technical Conference. American Society of Mechanical Engineers (ASME), Cleveland, Ohio, USA, 6–9 August 2017; Volume 3. [Google Scholar] [CrossRef]
- Yi, J.; Shen, Z.; Song, C.; Wang, Z. A soft robotic glove for hand motion assistance. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2016, Angkor Wat, Cambodia, 6–10 June 2016; pp. 111–116. [Google Scholar] [CrossRef]
- Yap, H.K.; Lim, J.H.; Goh, J.C.H.; Yeow, C.H. Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators. J. Med. Devices Trans. ASME 2016, 10. [Google Scholar] [CrossRef]
- Biggar, S.; Yao, W. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Xiloyannis, M.; Cappello, L.; Khanh, D.B.; Yen, S.C.; Masia, L. Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore, 26–29 June 2016; pp. 1213–1219. [Google Scholar] [CrossRef]
- Yap, H.K.; Ang, B.W.K.; Lim, J.H.; Goh, J.C.H.; Yeow, C.H. A fabric-regulated soft robotic glove with user intent detection using EMG and RFID for hand assistive application. In Proceedings of the Proceedings—IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 3537–3542. [Google Scholar] [CrossRef]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Low, F.Z.; Goh, J.C.H.; Yeow, R.C.H. MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Singapore, 11–14 August 2015; pp. 735–740. [Google Scholar] [CrossRef]
- In, H.; Kang, B.B.; Sin, M.; Cho, K.J. Exo-Glove: A wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 2015, 22, 97–105. [Google Scholar] [CrossRef]
- Michaud, H.O.; Teixidor, J.; Lacour, S.P. Soft flexion sensors integrating strechable metal conductors on a silicone substrate for smart glove applications. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 760–763. [Google Scholar] [CrossRef]
- Kuusisto, J.; Ellman, A.; Reunamo, J.; Kuosa, J. Manipulating virtual objects with a haptic glove based on soft pneumatic muscles. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009; Volume 2, pp. 1549–1556. [Google Scholar] [CrossRef]
Ref. | First Author | Time Interval | Processed Articles | Device Type | Main Topics | Device Purpose |
---|---|---|---|---|---|---|
[13] | Shahid, T. | 2008–2017 | 65 | Soft | Systematic review: actuation mode, mechanical and electrical attributes; Technological trend | Assistance, Rehabilitation |
[9] | Chu, C.Y. | Until 2017 | 62 | Soft 1 | Comparison of different design aspects of 44 unique devices | Assistance, Rehabilitation |
[7] | Du Plessis, T. | 2010–2020 | not declared | Soft and rigid | Actuation, power transmission, sensing, and control identified and discussed | Focus on Assistance and Rehabilitation |
[14] | Quach, B.M. | 2010–2018 | 10 1 | Soft | Classification of 10 Soft robotic gloves found in the literature | Rehabilitation |
[15] | Souhail, A. | 2002–2019 | 56 1 | Soft and rigid | Soft and rigid hand exoskeletons design main aspects and classification of 19 of them | Rehabilitation |
[16] | Chiaradia, D. | Until 2018 | 31 1 | Soft | Review of wrist exoskeletons which analyzes the main characteristics and technological choices | Rehabilitation and Assistance |
[10] | Yin, J. | Until 2021 | 240 1 | Soft | Review on experimental studies in soft materials for wearable sensing and haptic feedback in VR/AR applications | Haptic |
Ref. | First Author | Application Field | Exerted Force/Torque | ROM | Weight | Maximum Speed | Others |
---|---|---|---|---|---|---|---|
[23] | Tang | R | 180 g | ||||
[24] | Jiryaei | R | 550 g | ||||
[25] | Do | R | 220 g | 180 | |||
[26] | Chen | R and A | maximum force of 15 N | glove 100 g; actuation module 850 g (Li-ion batteries included) | |||
[27] | Setiawan | R and A | DIP 68 | 2 DOF | |||
[28] | Du | R | 1000 g | 148.3 | |||
[29] | Takahashi | R and A | 8 N | 10 Hz | 20 DOF | ||
[30] | Li | R | 36.9 N | 144 g | 10 DOF; average 0.8 s mirroring delay | ||
[31] | Chen | R and A | DIP 1.82 Nm, PIP 1.44 Nm, MCP 1.18 Nm with 0.42 MPa | DIP 72, PIP 98, MCP 81 | 0.5 Hz | 3 DOF | |
[32] | Gerez | R and A | 19.5 N max grasping | Abduction: Thumb/Index 73°, Index/Middle 34°, Middle/Ring 31°, and Ring/Pinky 30° | 90 g | 10 active DOF; 5 passive DOF | |
[19] | Burns | R and A | glove 258 g; actuation system 2.2 kg | 10 DOF | |||
[33] | Hu | R and A | actuator adduction/abduction force 8.1 N/5.7 N; flexion/extension force 4.6 N/1.9 N | 149 g; portable pneumatic box weighs 7.5 kg | 6 DOF | ||
[34] | Ullah | R and A | 2.45 N at each finger 13 N total | 50 g | 5 DOF | ||
[35] | Ismail | A | 600 g | 2 DOF | |||
[36] | Liu | R | 2 DOF | ||||
[37] | Kang | A | 20 N | PIP 55, MCP 58 | |||
[38] | Wang | R | 19 N tip force, 600 g | 216 finger flexion | 237 g | 0.13 Hz | 6 DOF |
[39] | Cappello | A | 15 N for object grasping at 172 kPa | glove 77 g; control box 5 kg | 4 DOF | ||
[40] | Yi | R and A | up to 40 N at the fingertip | <50 g | |||
[41] | Mohammadi | R and A | 22 N pinch force, 48 N power grasp force, hook grip up to 5 kg | 330g including battery | 4 active DOF | ||
[42] | Kim | A | more than 50 N at the fingertip | ||||
[43] | Ang | R | 41.8 ± 3.1 N maximum grip force | Index and thumb: DIP 23 ± 2.3°, PIP 85 ± 1.7°, MCP 27 ± 44.9° | entire system: 1.5 kg | 1 DOF | |
[44] | Yao | A | 11 N maximum hook force produced by nine SMA | 85.03 g | |||
[45] | Yap | R | total grip force 41.01 ± 2.73 N, total friction force 18.88 N with friction coefficient of 0.46 | DIP 34.6°, PIP 88.2°, MCP 34.6° | 180 g | 0.2–0.3 Hz | 4 DOF |
[46] | Cao | R | 35 N max grasp force | 50 g | |||
[47] | Haghshenas-Jaryani | R | DIP 68°, PIP 101°, MCP 84° | 5 DOF | |||
[48] | Polygerinos | R and A | 8 N at the distal end | 50 g | the path of the actuators agrees with the path of the biological fingers | ||
[49] | Delph | R | 15 N | ||||
[50] | Kadowaki | A | 9 N with 200 kPa at fingers for flexion | 135 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiboni, M.; Amici, C. Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications. Actuators 2022, 11, 232. https://doi.org/10.3390/act11080232
Tiboni M, Amici C. Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications. Actuators. 2022; 11(8):232. https://doi.org/10.3390/act11080232
Chicago/Turabian StyleTiboni, Monica, and Cinzia Amici. 2022. "Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications" Actuators 11, no. 8: 232. https://doi.org/10.3390/act11080232
APA StyleTiboni, M., & Amici, C. (2022). Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications. Actuators, 11(8), 232. https://doi.org/10.3390/act11080232