Research on the Inherent Nonlinearity Calibration of the Potentiometer of a Miniature Linear Series Elastic Actuator
Abstract
:1. Introduction
- (1)
- Present a miniature LSEA composed of two low-cost linear potentiometers.
- (2)
- Propose a novel BCM for inherent nonlinearity calibration of the potentiometer.
- (3)
- The effect of BCM calibration on LSEA control performance has been experimentally investigated.
2. Calibration Problem of the LSEA System
- (1)
- Inherent nonlinearity calibration of the linear potentiometer.
- (2)
- Initial assembly nonlinearity calibration of the spring deformation measurement.
3. Calibration Method
3.1. Inherent Nonlinearity Calibration Method
3.2. Calibration of Initial Assembly Nonlinearity of the Spring Deformation
4. Experimental Results and Discussion
4.1. Control Model Identification
4.2. Displacement Control Accuracy
4.3. Force Control Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, D.; Wang, W.; Shi, Y.; Kong, L. Flexible Control Strategy for Upper-Limb Rehabilitation Exoskeleton Based on Virtual Spring Damper Hypothesis. Actuators 2022, 11, 138. [Google Scholar] [CrossRef]
- Su, Y.; Zou, H.; Lu, H.; Hu, B.; Yu, H. Design and Control of a Nonlinear Series Elastic Cable Actuator Based on the Hill Muscle Model. Actuators 2022, 11, 68. [Google Scholar] [CrossRef]
- Murat, R.; Ebrahimi, N.; Jafari, A. Elastic Actuator Design Based on Bending of Cylindrical Beam for Robotic Applications. Actuators 2020, 9, 80. [Google Scholar] [CrossRef]
- Hua, H.; Liao, Z.; Chen, Y.; Xu, C. Design and Test of Compact Series Elastic Force Actuator for Grasping Mechanism. Trans. Chin. Soc. Agric. Mach. 2021, 52, 426–432, 442. [Google Scholar]
- Hua, H.; Liao, Z.; Chen, Y. A 1-Dof bidirectional graspable finger mechanism for robotic gripper. J. Mech. Sci. Technol. 2020, 34, 4735–4741. [Google Scholar] [CrossRef]
- Hua, H.; Liao, Z.; Wu, X.W.; Chen, Y.; Feng, C. A Back-drivable Linear Force Actuator for Adaptive Grasping. J. Mech. Sci. Technol. 2022, 1, 1–10. [Google Scholar]
- Hua, H.; Liao, Z. Design, Analysis, and Experiment of an Underactuated Robotic Gripper Actuated by Linear Series Elastic Actuator. J. Mech. Robot. 2022, 15, 021002. [Google Scholar] [CrossRef]
- Haldane, D.W.; Plecnik, M.M.; Yim, J.K.; Fearing, R.S. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 2016, 1, eaag2048. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Bae, J. Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control. IEEE/ASME Trans. Mechatron. 2017, 22, 1392–1400. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, X.; Ma, H.; Qin, L.; Liao, W.-H. Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton. Smart Mater. Struct. 2017, 26, 105008. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.D.; Park, H.; Hong, D.H.; Kang, T.H. Development of a Series Elastic Tendon Actuator (SETA) Based on Gait Analysis for a Knee Assistive Exosuit. Actuators 2022, 11, 166. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Zhao, H.; Wang, K. Design of a compliant robotic arm based on series elastic actuator. Robot 2016, 38, 385–394. [Google Scholar]
- Sun, Y.; Liu, Y.; Xu, L.; Zou, Y.; Faragasso, A.; Lueth, T.C. Automatic design of compliant surgical forceps with adaptive grasping functions. IEEE Robot. Autom. Lett. 2020, 5, 1095–1102. [Google Scholar] [CrossRef]
- Guo, J.; Low, J.-H.; Liang, X.; Lee, J.S.; Wong, Y.-R.; Yeow, R.C.H. A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery. IEEE/ASME Trans. Mechatron. 2019, 24, 1440–1451. [Google Scholar] [CrossRef]
- George, B.L.; Bharanidaran, R. Design of compliant gripper for surgical applications. Aust. J. Mech. Eng. 2019, 1, 256–262. [Google Scholar] [CrossRef]
- Takizawa, T.; Kanno, T.; Miyazaki, R.; Tadano, K.; Kawashima, K. Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor. Sens. Actuators A Phys. 2018, 271, 124–130. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Y.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Redekar, A.; Deb, D.; Ozana, S. Functionality Analysis of Electric Actuators in Renewable Energy Systems—A Review. Sensors 2022, 22, 4273. [Google Scholar] [CrossRef]
- Ballesteros, J.; Pastor, F.; GómezDeGabriel, J.M.; Gandarias, J.M.; Urdiales, C. Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI. Sensors 2020, 20, 2863. [Google Scholar] [CrossRef]
- Memar, A.H.; Esfahani, E.T. A Robot Gripper with Variable Stiffness Actuation for Enhancing Collision Safety. IEEE Trans. Ind. Electron. 2020, 67, 6607–6616. [Google Scholar] [CrossRef]
- Freitas, B.; Silva, M.; Carvalho, Ó.; Renjewski, D.; Fonseca, J.; Flores, P.; Espregueira-Mendes, J. Design, Modelling and Control of an Active Weight-Bearing Knee Exoskeleton with a Series Elastic Actuator. In Proceedings of the 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, Portugal, 22–23 February 2019; pp. 1–4. [Google Scholar]
- Deb, D.; Burkholder, J.; Tao, G. Adaptive Compensation of Nonlinear Actuators for Flight Control Applications; Springer: Berlin, Germany, 2022; Volume 386. [Google Scholar]
- Sengupta, I.; Gupta, S.; Deb, D.; Ozana, S. Dynamic Stability of an Electric Monowheel System Using LQG-Based Adaptive Control. Appl. Sci. 2021, 11, 9766. [Google Scholar] [CrossRef]
- Hua, H.; Liao, Z.; Wu, X.; Chen, Y. A Bezier based state calibrating method for low-cost potentiometer with inherent nonlinearity. Measurement 2021, 178, 109325. [Google Scholar] [CrossRef]
- Pan, G.; Guan, E.G.; Yang, F.; Zhan, S.T.; Fu, Z.; Zhao, Y.Z. Research on a novel linearity amending system for the precise film potentiometer. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1039–1048. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, G.; Sun, L. Automatic Trimming Algorithm and Process Testing of Precise Carbon Film Potentiometer. In Proceedings of the 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017), Beijing, China, 25–26 March 2017; pp. 426–429. [Google Scholar]
- Yan, B. Research on Linearity Continuous Correction Technology of Carbon Film Potentiometer Linearity. Master’s Thesis, Harbin Institute of Technology, Harbin, China.
- Ye, C.; Feng, S.; Xue, Z.; Guo, C.; Zhang, Y. Defeating runge problem by coefficients and order determination method with various approximation polynomials. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 8622–8627. [Google Scholar]
- Boyd, J.P.; Ong, J.R. Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation. Appl. Numer. Math. 2011, 61, 460–472. [Google Scholar] [CrossRef]
- Sergi, P.N.; De la Oliva, N.; del Valle, J.; Navarro, X.; Micera, S. Physically Consistent Scar Tissue Dynamics from Scattered Set of Data: A Novel Computational Approach to Avoid the Onset of the Runge Phenomenon. Appl. Sci. 2021, 11, 8568. [Google Scholar] [CrossRef]
- Fornberg, B.; Zuev, J. The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 2007, 54, 379–398. [Google Scholar] [CrossRef] [Green Version]
Target (N) | Tested (N) | Steady-State Error (%) | Estimated (N) | Estimation Error (%) |
---|---|---|---|---|
−5 | −5.2 | −4.6 | −5.1 | −2.5 |
−10 | −10.7 | −7.0 | −10.1 | −5.6 |
−15 | −14.4 | 4.0 | −14.8 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Si, P.; Hua, H.; Qiu, M. Research on the Inherent Nonlinearity Calibration of the Potentiometer of a Miniature Linear Series Elastic Actuator. Actuators 2022, 11, 207. https://doi.org/10.3390/act11080207
Song J, Si P, Hua H, Qiu M. Research on the Inherent Nonlinearity Calibration of the Potentiometer of a Miniature Linear Series Elastic Actuator. Actuators. 2022; 11(8):207. https://doi.org/10.3390/act11080207
Chicago/Turabian StyleSong, Jie, Peng Si, Hongliang Hua, and Ming Qiu. 2022. "Research on the Inherent Nonlinearity Calibration of the Potentiometer of a Miniature Linear Series Elastic Actuator" Actuators 11, no. 8: 207. https://doi.org/10.3390/act11080207
APA StyleSong, J., Si, P., Hua, H., & Qiu, M. (2022). Research on the Inherent Nonlinearity Calibration of the Potentiometer of a Miniature Linear Series Elastic Actuator. Actuators, 11(8), 207. https://doi.org/10.3390/act11080207