Speed Control of a Multi-Motor System Based on Fuzzy Neural Model Reference Method
Abstract
:1. Introduction
2. Separately Excited DC Motor
2.1. Mathematical Model
2.2. Speed Control Method
3. Fuzzy-Neural Control Scheme
3.1. Architecture of FNN
3.2. Learning Algorithm for FNN
4. Proposed FNMR Control Method
4.1. Model Reference Control
4.2. Mathematical Analysis of FNMRC
4.3. Multi-Motor System
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awdaa, M.A.; Obed, A.A.; Yaqoob, S.J. A Comparative Study between V/F and IFOC Control for Three-Phase Induction Motor Drives. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Baghdad, Iraq, 2021; Volume 1105, p. 012006. [Google Scholar]
- Keziz, B.; Ladaci, S.; Djouambi, A. Design of a MRAC Based Fractional order PID Regulator for DC Motor Speed Control. In Proceedings of the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria, 28–31 October 2018. [Google Scholar]
- Štil, V.J.; Varga, T.; Benšic, T.; Barukci, M. A Survey of Fuzzy Algorithms Used in Multi-Motor. Electronics 2020, 9, 1788. [Google Scholar] [CrossRef]
- Saleh, A.L.; Obed, A.A.; Al-Yasir, Y.I.; Elfergani, I.T.; Rodriguez, J.; Clarke, R.W.; Abd-Alhameed, R.A. Anti-windup scheme based on 2DOF-PIλDμ controller for velocity tracking of linear induction motor. Int. Trans. Electr. Energy Syst. 2019, 29, e12134. [Google Scholar] [CrossRef]
- Meda-Campaña, J.A.; Escobedo-Alva, J.O.; Rubio, J.D.J.; Aguilar-Ibañez, C.; Perez-Cruz, J.H.; Obregon-Pulido, G.; Tapia-Herrera, R.; Orozco, E.; Cordova, D.A.; Islas, M.A. On the Rejection of Random Perturbations and the Tracking of Random References in a Quadrotor. Complexity 2022, 2022, 3981340. [Google Scholar] [CrossRef]
- de Jesús Rubio, J.; Orozco, E.; Cordova, D.A.; Islas, M.A.; Pacheco, J.; Gutierrez, G.J.; Zacarias, A.; Soriano, L.A.; Meda-Campana, J.A.; Mujica-Vargas, D. Modified Linear Technique for the Controllability and Observability of Robotic Arms. IEEE Access 2022, 10, 3366–3377. [Google Scholar] [CrossRef]
- Aguilar-Ibanez, C.; Moreno-Valenzuela, J.; García-Alarcón, O.; Martinez-Lopez, M.; Acosta, J.Á.; Suarez-Castanon, M.S. PI-Type Controllers and Σ–Δ Modulation for Saturated DC-DC Buck Power Converters. IEEE Access 2021, 9, 20346–20357. [Google Scholar] [CrossRef]
- Soriano, L.A.; Rubio, J.d.J.; Orozco, E.; Cordova, D.A.; Ochoa, G.; Balcazar, R.; Cruz, D.R.; Meda-Campaña, J.A.; Zacarias, A.; Gutierrez, G.J. Optimization of Sliding Mode Control to Save Energy in a SCARA Robot. Mathematics 2021, 9, 3160. [Google Scholar] [CrossRef]
- Soriano, L.A.; Zamora, E.; Vazquez-Nicolas, J.M.; Hernández, G.; Barraza Madrigal, J.A.; Balderas, D. PD Control Compensation Based on a Cascade Neural Network Applied to a Robot Manipulator. Front. Neurorobotics 2020, 14, 577749. [Google Scholar] [CrossRef]
- Silva-Ortigoza, R.; Hernández-Márquez, E.; Roldán-Caballero, A.; Tavera-Mosqueda, S.; Marciano-Melchor, M.; García-Sánchez, J.R.; Hernández-Guzmán, V.M.; Silva-Ortigoza, G. Sensorless tracking control for a full-bridge Buck inverter-DC motor system: Passivity and flatness-based design. IEEE Access 2021, 9, 132191–132204. [Google Scholar] [CrossRef]
- Shahgholian, G.; Maghsoodi, M.; Mahdavian, M.; Janghorbani, M.; Azadeh, M.; Farazpey, S. Analysis of Speed Control in DC Motor Drive by Using Fuzzy Control Based on Model Reference Adaptive Control. In Proceedings of the 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016. [Google Scholar]
- Mohamad, K.A. Fuzzy Neural Controller for Multi-Machine Induction Motor Drives. Ph.D. Thesis, College of Engineering, Basrah University, Basrah, Iraq, February 2009. [Google Scholar]
- vsr Pavankumar, S.; Krishnaveni, S.; Venugopal, Y.B.; Babu, Y.K. A Neuro-fuzzy Based Speed Control of Separately Excited DC Motor. In Proceedings of the 2010 International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 26–28 November 2010; pp. 93–98. [Google Scholar]
- George, M.; Basu, K.P.; Chiat, A.T.W. Model Reference Controlled Separately Excited DC Motor. Neural Comput. Appl. 2010, 19, 343–351. [Google Scholar] [CrossRef]
- Al-Mashhadany, Y.I. Modeling and Simulation of Adaptive Neuro-Fuzzy Controller for Chopper-Fed DC Motor Drive. In Proceedings of the 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 18–19 April 2011; pp. 110–115. [Google Scholar]
- Gharib, M.R. Comparison of robust optimal QFT controller with TFC and MFC controller in a multi-input multi-output system. Rep. Mech. Eng. 2020, 1, 151–161. [Google Scholar] [CrossRef]
- Bozanic, D.; Tešić, D.; Marinković, D.; Milić, A. Modeling of neuro-fuzzy system as a support in decision-making processes. Rep. Mech. Eng. 2021, 2, 222–234. [Google Scholar] [CrossRef]
- Obaid, B.A.; Saleh, A.L.; Kadhim, A.K. Resolving of optimal fractional PID controller for DC motor drive based on anti-windup by invasive weed optimization technique. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 95–103. [Google Scholar] [CrossRef]
- Wang, Q.; He, F. The Synchronous Control of Multi-motor Drive Control System with Floating Compensation. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 1940–1954. [Google Scholar]
- El Ouanjli, N.; Taoussi, M.; Derouich, A.; Chebabhi, A.; El Ghzizal, A.; Bossoufi, B. High Performance Direct Torque Control of Doubly Fed Induction Motor using Fuzzy Logic. Gazi Univ. J. Sci. 2018, 31, 532–542. [Google Scholar]
- El Ouanjli, N.; Motahhir, S.; Derouich, A.; El Ghzizal, A.; Chebabhi, A.; Taoussi, M. Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Rep. 2019, 5, 271–279. [Google Scholar] [CrossRef]
- Lin, C.T.; Lee, C.G. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Farahani, G.; Rahmani, K. Speed Control of a Separately Excited DC Motor Using New Proposed Fuzzy Neural Algorithm Based on FOPID Controller. J. Control. Autom. Electr. Syst. 2019, 30, 728–740. [Google Scholar] [CrossRef]
- Hameed, W.I.; Sawadi, B.A.; Muayed, A. Voltage Tracking Control of DC-DC Boost Converter Using Fuzzy Neural Network. Int. J. Power Electron. Drive Syst. 2018, 9, 1657–1665. [Google Scholar] [CrossRef]
- Hameed, W.I.; Saleh, A.L.; Sawadi, B.A.; Al-Yasir, Y.I.; Abd-Alhameed, R.A. Maximum power point tracking for photovoltaic system by using fuzzy neural network. Inventions 2019, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Kareem, S.A.H.A. Fuzzy Neural and Fuzzy Neural Petri Nets Control for Robot Arm. Ph.D. Thesis, College of Engineering, Basrah University, Basrah, Iraq, September 2010. [Google Scholar]
- L-Salih, H.N.H.A. Neurofuzzy Controller for the Induction Motor Speed Using the Slip Power Recovery Strategy. Ph.D. Thesis, College of Engineering, Basrah University, Basrah, Iraq, 2005. [Google Scholar]
- Wilamowski, B.M.; Irwin, J.D. Power Electronics and Motor Drives; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2011. [Google Scholar]
- Mustafa, M.A.; Abdel-Raheem, Y.; Ahmed, S.A.; Abdel-Jaber, G.T. Variable step size PO MPPT algorithm using model reference adaptive control for optimal power extraction. Int. Trans. Electr. Energy Syst. 2020, 30, e12151. [Google Scholar]
- Pattanaik, J.K.; Basu, M.; Das, D.P. Dynamic economic dispatch: A comparative study for diferential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing. J. Electr. Syst. Inf. Technol. 2019, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, K.; Ali, A.A.; Nagarajan, R. Fuzzy-Neural Control of Hot-rolling Mill. In Proceedings of the 1st International Conference on Energy, Power and Control (EPC-IQ), Basrah, Iraq, 30 November–2 December 2010; pp. 151–158. [Google Scholar]
- Tan, K.K.; Lee, T.H.; Huang, S. Precision Motion Control Design and Implementation; Springer: London, UK, 2008. [Google Scholar]
- Tao, L.; Chen, Q.; Nan, Y.; Dong, F.; Jin, Y. Speed Tracking and Synchronization of a Multimotor System Based on Fuzzy ADRC and Enhanced Adjacent Coupling Scheme. Complexity 2018, 2018, 5632939. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Cheng, Y.; Wang, Y. Research on a Multi-Motor Coordinated Control Strategy Based on Fuzzy Ring Network Control. IEEE Access 2020, 8, 39375–39388. [Google Scholar] [CrossRef]
- Feng, X.; Zhuo, Q.; Liu, X.; Qian, Y.; Li, Y. Development of multi-motor synchronous control system based on network-on-chip. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2020, 234, 1000–1010. [Google Scholar] [CrossRef]
- Perdukova, D.; Fedor, P.; Bacik, J.; Hercko, J.; Rofar, J. Multi-motor drive optimal control using a fuzzy model based approach. J. Ambient. Intell. Smart Environ. 2017, 9, 329–344. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
N | 1750 rpm |
230 V | |
120 V | |
46 A | |
1.6 A | |
0.767 H | |
0.008 H | |
0.1 Ω | |
75 Ω | |
0.314 Nm∙S/rad | |
2.2 kg/m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
I. Breesam, W.; L. Saleh, A.; A. Mohamad, K.; J. Yaqoob, S.; A. Qasim, M.; T. Alwan, N.; Nayyar, A.; Al-Amri, J.F.; Abouhawwash, M. Speed Control of a Multi-Motor System Based on Fuzzy Neural Model Reference Method. Actuators 2022, 11, 123. https://doi.org/10.3390/act11050123
I. Breesam W, L. Saleh A, A. Mohamad K, J. Yaqoob S, A. Qasim M, T. Alwan N, Nayyar A, Al-Amri JF, Abouhawwash M. Speed Control of a Multi-Motor System Based on Fuzzy Neural Model Reference Method. Actuators. 2022; 11(5):123. https://doi.org/10.3390/act11050123
Chicago/Turabian StyleI. Breesam, Waleed, Ameer L. Saleh, Khearia A. Mohamad, Salam J. Yaqoob, Mohammed A. Qasim, Naseer T. Alwan, Anand Nayyar, Jehad F. Al-Amri, and Mohamed Abouhawwash. 2022. "Speed Control of a Multi-Motor System Based on Fuzzy Neural Model Reference Method" Actuators 11, no. 5: 123. https://doi.org/10.3390/act11050123
APA StyleI. Breesam, W., L. Saleh, A., A. Mohamad, K., J. Yaqoob, S., A. Qasim, M., T. Alwan, N., Nayyar, A., Al-Amri, J. F., & Abouhawwash, M. (2022). Speed Control of a Multi-Motor System Based on Fuzzy Neural Model Reference Method. Actuators, 11(5), 123. https://doi.org/10.3390/act11050123