Development, Optimization, Biological Assays, and In Situ Field Immersion of a Transparent Piezoelectric Vibrating System for Antifouling Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Design
2.2. Electromechanical Characterizations
2.3. Bacterial Adhesion Test
2.4. In Situ Immersion Test
3. Results and Discussion
3.1. Biological Assays
3.2. In Situ Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haras, D. Biofilms et altérations des matériaux: De l’analyse du phénomène aux stratégies de prévention. Mater. Tech. 2005, 93, 27–41. [Google Scholar] [CrossRef]
- Delauney, L.; Compère, C.; Lehaitre, M. Biofouling Protection for Marine Environmental Sensors. Ocean. Sci. 2010, 6, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Manov, D.V.; Chang, G.C.; Dickey, T.D. Methods for Reducing Biofouling of Moored Optical Sensors. J. Atmos. Ocean. Technol. 2004, 21, 958–968. [Google Scholar] [CrossRef] [Green Version]
- Joslin, J.; Polagye, B. Demonstration of Biofouling Mitigation Methods for Long-Term Deployments of Optical Cameras. Mar. Technol. Soc. J. 2015, 49, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Zebra Tech. Hydro-Wiper. Available online: https://www.zebra-tech.co.nz/hydro-wiper/ (accessed on 28 January 2022).
- Davis, R.F.; Moore, C.C.; Zaneveld, J.R.V.; Napp, J.M. Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments. J. Geophys. Res. Ocean. 1997, 102, 5851–5855. [Google Scholar] [CrossRef]
- Soldo, D.; Hari, R.; Sigg, L.; Behra, R. Tolerance of Oocystis nephrocytioides to copper: Intracellular distribution and extracellular complexation of copper. Aquat. Toxicol. 2005, 71, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Feng, C.; Matsuura, T. Study on reduction of inorganic membrane fouling by ultraviolet irradiation. J. Membr. Sci. 2004, 244, 179–182. [Google Scholar] [CrossRef]
- UV_Xchange-AML Oceanographic. Available online: https://www.subseatechnologies.com/aml-oceanographic/bio-fouling/uv-xchange/ (accessed on 28 January 2022).
- Almeida, E.; Diamantino, T.C.; de Sousa, O. Marine paints: The particular case of anti-fouling paints. Prog. Org. Coat. 2007, 59, 2–20. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal anti-fouling coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Legg, M.; Yücel, M.K.; De Carellan, I.G.; Kappatos, V.; Selcuk, C.; Gan, T.H. Acoustic methods for biofouling control: A review. Ocean Eng. 2015, 103, 237–247. [Google Scholar] [CrossRef]
- Stutt, G.A.; Jones, P.H. Marine Anti-Fouling System Using Ultrasonics. WO 2006/045161 A1, 4 May 2006. [Google Scholar]
- Choi, C.H.; Scardino, A.J.; Dylejko, P.G.; Fletcher, L.E.; Juniper, R. The effect of vibration frequency and amplitude on biofouling deterrence. Biofouling 2013, 29, 195–202. [Google Scholar] [CrossRef]
- Sheherbakov, P.S.; Grigor’yan, F.Y.; Pogrebnyak, N.V. Distribution of high-frequency vibration in hulls of krasnograd-class ships equipped with ultrasonic antifouling protection systems. In Transactions. Technical Operations of the Maritime Fleet. Thermochemical Studies. Control of Corrosion and Fouling. Central Scientific Research Institute of the Maritime Fleet No. 160, 1972; Defense Technical Information Center: Fort Belvoir, VA, USA, 1974. [Google Scholar]
- Bott, T.R. Biofouling Control with Ultrasound. Heat Transf. Eng. 2000, 21, 43–49. [Google Scholar] [CrossRef]
- Guo, S.; Lee, H.P.; Khoo, B.C. Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement. J. Exp. Mar. Biol. Ecol. 2011, 409, 253–258. [Google Scholar] [CrossRef]
- Kitamura, H.; Takahashi, K.; Kanamaru, D. Inhibitory Effect of Ultrasonic Waves on the Larval Settlement of the Barnacle, Balanus amphitrite in the Laboratory. Mar. Fouling 1995, 12, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Debavelaere-Callens, D.; Peyre, L.; Campistron, P.; Hildebrand, H.F. On the use of ultrasounds to quantify the longitudinale threshold force to detach osteoblastic cells from a conditioned glass substrate. Biomol. Eng. 2007, 24, 521–525. [Google Scholar] [CrossRef]
- Bahadur, I.M.; Mills, J.K. Fluidic Vacuum-Based Biological Cell Holding Device With Piezoelectrically Induced Vibration. In Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, China, 22–25 May 2011. [Google Scholar]
- Rahmoune, M.; Tarico, C.; Latour, M. Application of piezoelectricity for marine fouling prevention in oceanographic sensors. Ferroelectrics 1995, 171, 373–379. [Google Scholar] [CrossRef]
- Rahmoune, M.; Tarico, C.; Latour, M. Modelisation of flexural and transverse vibrations of thin plates equipped with piezopolymer transducers. Application to sensors immersed in fluid and submarine fouling protection. In Proceedings of the 8th International Symposium on Electrets (ISE 8), Paris, France, 7–9 September 1994. [Google Scholar]
- Casset, F. Picosecond Acoustic Characterization of Mechanical Properties of PZT Deposited in Thin Films for MEMS Applications. Ph.D. Thesis, University of Lille, Lille, France, 2014; p. 99. Available online: https://pepite-depot.univ-lille.fr/LIBRE/EDSPI/2014/50376-2014-Casset.pdf (accessed on 28 January 2022).
- PIC155® PZT Material Sold by PI Ceramic GmBH®. Available online: https://static.piceramic.com/fileadmin/user_upload/physik_instrumente/files/datasheets/PI_Ceramic_Material_Data.pdf (accessed on 28 January 2022).
- Covestro® Makrofol® DE 1-1. Available online: https://solutions.covestro.com/en/products/makrofol/makrofol-de-1-1-000000_80161972-05015821? (accessed on 28 January 2022).
- Vitralit® 7989 UV-Adhesive Sold by Panacol-Elosol GmbH®. Available online: https://www.panacol-usa.com/panacol/datasheets/vitralit/vitralit-7989-english-tds-panacol-adhesive.pdf (accessed on 28January 2022).
- Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Gualdino, A.; Chu, V.; Conde, J.P. Study of the out-of-plane vibrational modes in thin-film amorphous silicon micromechanical disk resonators. J. Appl. Phys. 2013, 113, 174904. [Google Scholar] [CrossRef]
- Valentín, D.; Presas, A.; Egusquiza, E.; Valero, C. Influence of the added mass effect and boundary conditions on the dynamic response of submerged and confined structures. IOP Conf. Ser. Earth Environ. Sci. 2014, 22. [Google Scholar] [CrossRef]
- Weckman, N.; Seshia, A. Micromachined Piezoelectric Acoustic Sensor with Multiple Addressable Flexural Modes Demonstrating Improved Q in Liquid. Procedia Eng. 2015, 120, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Weckman, N.E.; Seshia, A. Reducing dissipation in piezoelectric flexural microplate resonators in liquid environments. Sensors Actuators A Phys. 2017, 267, 464–473. [Google Scholar] [CrossRef]
- Burg, T.P.; Sader, J.E.; Manalis, S.R. Nonmonotonic Energy Dissipation in Microfluidic Resonators. Phys. Rev. Lett. 2009, 102, 228103. [Google Scholar] [CrossRef] [PubMed]
- Camps, M.; Briand, J.-F.; Guentas-Dombrowsky, L.; Culioli, G.; Bazire, A.; Blache, Y. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. Mar. Pollut. Bull. 2011, 62, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
Membrane Number | 1 | 2 | 3 | 4 | 5 | 6 | Average | Standard Deviation (%) | |
---|---|---|---|---|---|---|---|---|---|
Air | 1st mode frequency (Hz) | 2690.6 | 2571.9 | 2646.9 | 2587.5 | 2653.1 | 2653.1 | 2633.9 | 1.7 |
Deflection (µm) | 7.11 | 3.49 | 8.29 | 8.31 | 8.98 | 5.89 | 7.01 | 29.1 | |
Water | 1st mode frequency (Hz) | 809.4 | 800.0 | 781.3 | 790.6 | 750.0 | 806.3 | 789.6 | 2.78 |
Deflection (µm) | 8.05 | 9.91 | 12.47 | 10.92 | 17.78 | 9.71 | 11.47 | 29.78 |
Control Membranes | Vibrating Membranes | |||
---|---|---|---|---|
Adhesion Rate (%) | Standard Deviation of the Adhesion Rate (%) | Adhesion Rate (%) | Standard Deviation of the Adhesion Rate (%) | |
Middle | 100.0 | 44.6 | 3.9 | 7.9 |
Intermediate | 100.0 | 41.6 | 6.5 | 15.1 |
Periphery | 100.0 | 31.6 | 137.9 | 57.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grilli, L.; Casset, F.; Bressy, C.; Brisset, H.; Briand, J.-F.; Barry-Martinet, R.; Colin, M. Development, Optimization, Biological Assays, and In Situ Field Immersion of a Transparent Piezoelectric Vibrating System for Antifouling Applications. Actuators 2022, 11, 47. https://doi.org/10.3390/act11020047
Grilli L, Casset F, Bressy C, Brisset H, Briand J-F, Barry-Martinet R, Colin M. Development, Optimization, Biological Assays, and In Situ Field Immersion of a Transparent Piezoelectric Vibrating System for Antifouling Applications. Actuators. 2022; 11(2):47. https://doi.org/10.3390/act11020047
Chicago/Turabian StyleGrilli, Lucas, Fabrice Casset, Christine Bressy, Hugues Brisset, Jean-François Briand, Raphaëlle Barry-Martinet, and Mikael Colin. 2022. "Development, Optimization, Biological Assays, and In Situ Field Immersion of a Transparent Piezoelectric Vibrating System for Antifouling Applications" Actuators 11, no. 2: 47. https://doi.org/10.3390/act11020047
APA StyleGrilli, L., Casset, F., Bressy, C., Brisset, H., Briand, J. -F., Barry-Martinet, R., & Colin, M. (2022). Development, Optimization, Biological Assays, and In Situ Field Immersion of a Transparent Piezoelectric Vibrating System for Antifouling Applications. Actuators, 11(2), 47. https://doi.org/10.3390/act11020047