Delay-Dependent Stability Analysis of Haptic Systems via an Auxiliary Function-Based Integral Inequality
Abstract
:1. Introduction
2. System Description
3. A Stability Criterion
4. Case Study
- (1)
- Case 1: ms, ms, N/m, Ns/m, , .
- (2)
- Case 2: ms, ms, N/m, Ns/m, , .
- (3)
- Case 3: ms, ms, N/m, Ns/m, , .
- (4)
- Case 4: ms, ms, N/m, Ns/m, , .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
LKF | Lyapunov–Krasovskii functional |
1-DOF | One degree of freedom |
NDVs | Number of the decision variables |
References
- Grajewski, D.; Górski, F.; Hamrol, A.; Zawadzki, P. Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 2015, 75, 359–368. [Google Scholar] [CrossRef] [Green Version]
- You, B.; Li, J.; Ding, L.; Xu, J.; Li, W.; Li, K.; Gao, H. Semi autonomous bilateral teleoperation of hexapod robot based on haptic force feedback. J. Intell. Robot. Syst. 2018, 91, 583–602. [Google Scholar] [CrossRef]
- Yoon, H.U.; Wang, R.F.; Hutchinson, S.A.; Hur, P. Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 2017, 91, 258–269. [Google Scholar] [CrossRef]
- Mashayekhi, A.; Behbahani, S.; Ficuciello, F.; Siciliano, B. Delay-dependent stability analysis in haptic rendering. J. Intell. Robot. Syst. 2019, 97, 33–45. [Google Scholar] [CrossRef]
- Shangguan, X.C.; He, Y.; Zhang, C.K.; Jin, L.; Yao, W.; Jiang, L.; Wu, M. Control performance standards-oriented event-triggered load frequency control for power systems under limited communication bandwidth. IEEE Trans. Control Syst. Technol. 2021. [Google Scholar] [CrossRef]
- Minsky, M.; Ming, O.; Steele, O.; Brooks, F.P.; Behensky, M. Feeling and seeing: Issues in force display. ACM SIGGRAPH Comput. Graph. 1990, 24, 235–241. [Google Scholar] [CrossRef]
- Hannaford, B.; Ryu, J.H. Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 1990, 18, 1–10. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, Y.S.; Hannaford, B. Sampled- and continuous-time passivity and stability of virtual environments. IEEE Trans. Robot. 1990, 20, 772–776. [Google Scholar] [CrossRef]
- Gil, J.J.; Avello, A.; Rubio, Á.; Flórez, J. Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion. IEEE Trans. Control Syst. Technol. 2004, 12, 583–588. [Google Scholar] [CrossRef]
- Gil, J.J.; Sánchez, E.; Hulin, T.; Preusche, C.; Hirzinger, G. Stability boundary for haptic rendering: Influence of damping and delay. J. Comput. Inf. Sci. Eng. 2009, 9, 011005. [Google Scholar] [CrossRef]
- Mashayekhi, A.; Behbahani, S.; Ficuciello, F.; Siciliano, B. Influence of human operator on stability of haptic rendering: A closed-form equation. Int. J. Intell. Robot. Appl. 2020, 4, 403–415. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.G.; Lin, C.; Wu, M. Augmented Lyapunov functional and delay dependent stability criteria for neutral systems. Int. J. Robust Nonlinear Control 2005, 15, 923933. [Google Scholar] [CrossRef]
- Ning, C.Y.; He, Y.; Wu, M.; Zhou, S.W. Indefinite derivative Lyapunov-Krasovskii functional method for input to state stability of nonlinear systems with time-delay. Appl. Math. Comput. 2015, 270, 534–542. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M. Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals. IEEE Trans. Autom. Control 2017, 62, 5331–5336. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; He, Y.; She, J.H.; Liu, G.P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40, 1435–1439. [Google Scholar] [CrossRef]
- Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Park, P.; Lee, W.; Lee, S.Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 2015, 352, 1378–1396. [Google Scholar] [CrossRef]
- Zeng, H.B.; He, Y.; Wu, M.; She, J.H. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control 2015, 60, 2768–2772. [Google Scholar] [CrossRef]
- Zhang, C.K.; He, Y.; Jiang, L.; Wu, M.; Wang, Q.G. An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 2017, 85, 481–485. [Google Scholar] [CrossRef]
- Kwon, W.; Koo, B.; Lee, S.M. Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems. Appl. Math. Comput. 2018, 320, 149–157. [Google Scholar] [CrossRef]
- Zeng, H.B.; Liu, X.G.; Wang, W. A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 2019, 354, 1–8. [Google Scholar] [CrossRef]
- Diolaiti, N.; Niemeyer, G.; Barbagli, F.; Salisbury, J.K. Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 2006, 22, 256–268. [Google Scholar] [CrossRef]
- Hulin, T.; Albu-Schaffer, A.; Hirzinger, G. Passivity and stability boundaries for haptic systems with time delay. IEEE Trans. Control Syst. Technol. 2014, 22, 1297–1309. [Google Scholar]
- Hogan, N. Controlling impedance at the man/machine interface. In Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; Volume 1, pp. 1626–1631. [Google Scholar]
- Zhang, C.K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M. A relaxed quadratic function negative-determination lemma and its application to time-delay systems. Automatica 2020, 113, 108764. [Google Scholar] [CrossRef]
Criteria | NDVs * | ||||
---|---|---|---|---|---|
0.2 | 0.3 | 0.4 | 0.5 | ||
Theorem 2 [4] | 0.089 | 0.118 | 0.128 | 0.117 | 153 |
Theorem 1 | 0.101 | 0.131 | 0.141 | 0.131 | 67 |
Theoretical value | 0.104 | 0.132 | 0.143 | 0.136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, D.; Liu, Y.; Zhu, C.; Jin, L.; Wang, L. Delay-Dependent Stability Analysis of Haptic Systems via an Auxiliary Function-Based Integral Inequality. Actuators 2021, 10, 171. https://doi.org/10.3390/act10080171
Xiong D, Liu Y, Zhu C, Jin L, Wang L. Delay-Dependent Stability Analysis of Haptic Systems via an Auxiliary Function-Based Integral Inequality. Actuators. 2021; 10(8):171. https://doi.org/10.3390/act10080171
Chicago/Turabian StyleXiong, Du, Yunfan Liu, Cui Zhu, Li Jin, and Leimin Wang. 2021. "Delay-Dependent Stability Analysis of Haptic Systems via an Auxiliary Function-Based Integral Inequality" Actuators 10, no. 8: 171. https://doi.org/10.3390/act10080171
APA StyleXiong, D., Liu, Y., Zhu, C., Jin, L., & Wang, L. (2021). Delay-Dependent Stability Analysis of Haptic Systems via an Auxiliary Function-Based Integral Inequality. Actuators, 10(8), 171. https://doi.org/10.3390/act10080171