A Pneumatic Generator Based on Gas-Liquid Reversible Transition for Soft Robots
Abstract
:1. Introduction
2. Design Concept of the Novel Pneumatic Generator
3. Modeling
3.1. Basic Equations
3.2. Pressurization Stage
3.3. Fast Depressurization Stage
3.4. Slow Depressurization Stage
4. Prototype
5. Experimental Investigations
5.1. Experimental Setup
5.2. Results
5.2.1. Pressure Control Characteristics
5.2.2. Soft Finger Actuation Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, E.W.; Blumenschein, L.H.; Greer, J.D.; Okamura, A.M. A soft robot that navigates its environment through growth. Sci. Robot. 2017, 2, 3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Xie, Z.; Yang, X.; Wang, T.; Wen, L. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 3–7 December 2016; pp. 509–514. [Google Scholar]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Walker, I.D. Kinematics for multisection continuum robots. IEEE Trans. Robot. 2006, 22, 43–55. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, G.; Liang, Y.; Zhang, C.; Wang, W.; Qian, D.; Yang, H.; Zou, J. Controllable Stiffness Origami “Skeletons” for Lightweight and Multifunctional Artificial Muscles. Adv. Funct. Mater. 2020, 30, 2000349. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Chen, X.; Wang, Z.; Jin, Y.; Chen, X. Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 3–7 December 2016; pp. 350–356. [Google Scholar]
- Yan, J.; Xu, B.; Zhang, X.; Zhao, J. Design and test on a new spiral driven pure torsional soft actuator. In Proceedings of the International Conference on Intelligent Robotics and Applications 2017, Wuhan, China, 16–18 August 2017. [Google Scholar]
- Xie, D.; Zuo, S.; Liu, J. A novel flat modular pneumatic artificial muscle. Smart Mater. Struct. 2020, 29, 065013. [Google Scholar] [CrossRef]
- Xie, D.; Liu, J.; Kang, R.; Zuo, S. Fully 3D-Printed Modular Pipe-Climbing Robot. IEEE Robot. Autom. Lett. 2021, 6, 462–469. [Google Scholar] [CrossRef]
- Preechayasomboon, P.; Rombokas, E. Sensuator: A Hybrid Sensor–Actuator Approach to Soft Robotic Proprioception Using Recurrent Neural Networks. Actuators 2021, 10, 30. [Google Scholar] [CrossRef]
- Gravagne, I.; Rahn, C.; Walker, I. Large deflection dynamics and control for planar continuum robots. IEEE/ASME Trans. Mech. 2003, 8, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Yang, G.; Chen, S.; Wang, Y.; Zhang, C.; Fang, Z.; Zheng, T.; Wang, C. Study on Stiffness-Oriented Cable Tension Distribution for a Symmetrical Cable-Driven Mechanism. Symmetry 2019, 11, 1158. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Du, R. Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst. 2013, 10, 209–220. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Luo, M.; Chen, H.; Yang, Z.; Li, D.; Li, P. A bio-inspired soft-rigid hybrid actuator made of electroactive dielectric elastomers. Appl. Mater. Today 2020, 21, 100814. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef]
- Ekbatani, R.Z.; Shao, K.; Khawwaf, J.; Wang, H.; Zheng, J.; Chen, X.; Nikzad, M. Control of an IPMC Soft Actuator Using Adaptive Full-Order Recursive Terminal Sliding Mode. Actuators 2021, 10, 33. [Google Scholar] [CrossRef]
- Kotikian, A.; Mcmahan, C.; Davidson, E.C.; Muhammad, J.M.; Weeks, R.D.; Daraio, C.; Lewis, J.A. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 2019, 4, eaax7044. [Google Scholar] [CrossRef]
- Lee, H.-S.; Jeon, Y.-U.; Lee, I.-S.; Jeong, J.-Y.; Hoang, M.C.; Hong, A.; Choi, E.; Park, J.-O.; Kim, C.-S. Wireless Walking Paper Robot Driven by Magnetic Polymer Actuator. Actuators 2020, 9, 109. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Jian, Y.; Wu, B.; Yan, H.; Lu, H.; Wei, S.; Wu, S.; Xue, Q.; Chen, T. Multi-Field Synergy Manipulating Soft Polymeric Hydrogel Transformers. Adv. Intell. Syst. 2020, 3, 2000208. [Google Scholar] [CrossRef]
- Chu, H.; Hu, X.; Wang, Z.; Mu, J.; Li, N.; Zhou, X.; Fang, S.; Haines, C.S.; Park, J.W.; Qin, S.; et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; Park, J.-O.; Zheng, S.; Choi, E. Ultralow voltage high-performance bioartificial muscles based on lonically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 2020, 12, 2007749. [Google Scholar]
- Haines, C.S.; Lima, M.D.; Li, N.; Spinks, G.M.; Foroughi, J.; Madden, J.D.W.; Kim, S.H.; Fang, S.; De Andrade, M.J.; Göktepe, F.; et al. Artificial Muscles from Fishing Line and Sewing Thread. Science 2014, 343, 868–872. [Google Scholar] [CrossRef]
- Cianchetti, M.; Follador, M.; Mazzolai, B.; Dario, P.; Laschi, C. Design and development of a soft robotic octopus arm exploiting embodied intelligence. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 28 June 2012; pp. 5271–5276. [Google Scholar]
- Yang, C.; Geng, S.; Walker, I.; Branson, D.T.; Liu, J.; Dai, J.S.; Kang, R. Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness. Int. J. Robot. Res. 2020, 39, 1620–1634. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; GE, Q. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 2019, 29, 1806698. [Google Scholar] [CrossRef]
- Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun. 2017, 8, 596. [Google Scholar] [CrossRef]
- Cartolano, M.; Xia, B.; Miriyev, A.; Lipson, H. Conductive Fabric Heaters for Heat-Activated Soft Actuators. Actuators 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Mirvakili, S.M.; Sim, D.; Hunter, I.W.; Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 2020, 5, eaaz4239. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Tolley, M.T.; Overveld, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powerd by combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, R.F.; Stokes, A.A.; Freake, J.; Barber, J.; Snyder, P.W.; Mazzeo, A.D.; Cademartiri, L.; Morin, S.A.; Whitesides, G.M. Using Explosions to Power a Soft Robot. Angew. Chem. 2013, 52, 2892–2896. [Google Scholar] [CrossRef]
- Loepfe, M.; Schumacher, C.M.; Lustenberger, U.B.; Stark, W.J. An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robot. 2015, 2, 33–41. [Google Scholar] [CrossRef]
- Must, I.; Sinibaldi, E.; Mazzolai, B. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat. Commun. 2019, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 2019, 359, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Kellaris, N.; Venkata, V.G.; Smith, G.M.; Mitchell, S.K.; Keplinger, C. Peano-HASEL actuators: Muscle-minetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 2018, 3, eaar3276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Zhang, C.; Zhong, Y.; Zhu, P.; Hu, Y.; Jiao, Z.; Wei, X.; Lu, G.; Wang, J.; Liang, Y.; et al. Customizing a self-healing soft pump for robot. Nat. Commun. 2021, 12, 2247. [Google Scholar] [CrossRef] [PubMed]
- Karami, F.; Wu, L.; Tadesse, Y. Modeling of One-ply and Two-ply Twisted and Coiled Polymer (TCP) Artificial Muscles. IEEE/ASME Trans. Mech. 2021, 26, 300–310. [Google Scholar]
- Suzhou Rochu Robotics Co., LTD. Rochu Catalog V2.6[EB/OL]. Available online: https://en.rochu.com/catalogusermanuals/ (accessed on 1 May 2021).
- Mirvakili, S.M.; Hunter, I.W. Artificial Muscles: Mechanisms, Applications, and Challenges. Adv. Mater. 2018, 30, 1704407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, Z.; Wang, C.; Zarrouk, D.; Seo, J.-W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Parameter | Value |
---|---|---|---|
Power of the heater | 800 W | Concentration of the weak electrolyte solution | 25% |
Mass of the shell | 41.47 g | Volume of the weak electrolyte solution | 3/5 mL |
Volume of the closed cavity | 6.8 mL | Measuring range of the pressure sensor | 0–25 bar |
Thickness of the shell | 2 mm | Measuring range of the temperature sensor | –50 to 100 °C |
External surface area of the shell | 60 cm2 | Ambient temperature | 10 °C |
Parameter | Value | Parameter | Value |
---|---|---|---|
Segments | 5 | Total stroke of the finger | 40 mm |
Length of the finger | 52 mm | Pressurized stroke of the finger | 24 mm |
Width of the finger | 18 mm | Weight of the finger | 20 g |
Height of the finger | 21 mm | Safe working pressure | 2.60 bar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Yang, G.; Deng, Y.; Zheng, T.; Fang, Z.; Zhang, H.; Jiang, X. A Pneumatic Generator Based on Gas-Liquid Reversible Transition for Soft Robots. Actuators 2021, 10, 103. https://doi.org/10.3390/act10050103
Zhang G, Yang G, Deng Y, Zheng T, Fang Z, Zhang H, Jiang X. A Pneumatic Generator Based on Gas-Liquid Reversible Transition for Soft Robots. Actuators. 2021; 10(5):103. https://doi.org/10.3390/act10050103
Chicago/Turabian StyleZhang, Guolong, Guilin Yang, Yimin Deng, Tianjiang Zheng, Zaojun Fang, Hao Zhang, and Xiongyu Jiang. 2021. "A Pneumatic Generator Based on Gas-Liquid Reversible Transition for Soft Robots" Actuators 10, no. 5: 103. https://doi.org/10.3390/act10050103
APA StyleZhang, G., Yang, G., Deng, Y., Zheng, T., Fang, Z., Zhang, H., & Jiang, X. (2021). A Pneumatic Generator Based on Gas-Liquid Reversible Transition for Soft Robots. Actuators, 10(5), 103. https://doi.org/10.3390/act10050103