Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad
Abstract
:1. Introduction
2. Design
3. Experiments
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, C.; Franco, M.; Culjat, M.O.; Higa, A.T.; Bisley, J.W.; Dutson, E.; Grundfest, W.S. Fabrication and Characterization of a Balloon Actuator Array for Haptic Feedback in Robotic Surgery. ASME J. Med. Devices 2008, 2, 041006. [Google Scholar] [CrossRef]
- Laycock, S.D.; Day, A.M. Recent Developments and Applications of Haptic Devices. Comput. Graph. Forum 2003, 22, 117–132. [Google Scholar] [CrossRef]
- Culjat, M.; King, C.; Franco, M.; Bisley, J.; Grundfest, W.; Dutson, E. Pneumatic balloon actuators for tactile feedback in robotic surgery. Ind. Robot 2008, 35, 449–455. [Google Scholar] [CrossRef]
- Yun, S.; Yoo, J.; Lim, S.; Park, J.; Lee, H.-K.; Yun, K.-S. Three-axis pneumatic tactile display with integrated capacitive sensors for feedback control. Microsyst. Technol. 2016, 22, 275–282. [Google Scholar] [CrossRef]
- Gallo, S.; Son, C.; Lee, H.J.; Bleuler, H.; Cho, I.-J. A flexible multimodal tactile display for delivering shape and material information. Sens. Actuators A Phys. 2015, 236, 180–189. [Google Scholar] [CrossRef]
- Kontarinis, D.; Son, J.; Peine, W.; Howe, R. A tactile shape sensing and display system for teleoperated manipulation. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 641–646. [Google Scholar] [CrossRef]
- Minamizawa, K.; Prattichizzo, D.; Tachi, S. Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback. In Proceedings of the 2010 IEEE Haptics Symposium, Waltham, MA, USA, 25–26 March 2010; pp. 257–260. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Yun, S.; Lim, S.-C.; Park, J.; Yun, K.-S.; Lee, H.-K. Position controlled pneumatic tactile display for tangential stimulation of a finger pad. Sensors Actuators A Phys. 2015, 229, 15–22. [Google Scholar] [CrossRef]
- Shiokawa, Y.; Tazo, A.; Konyo, M.; Maeno, T. Hybrid display of realistic tactile sense using ultrasonic vibrator and force display. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3008–3013. [Google Scholar]
- Kuroki, S.; Kajimoto, H.; Nii, H.; Kawakami, N.; Tachi, S. Proposal for tactile sense presentation that combines electrical and mechanical stimulus. In Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), Tsukuba, Japan, 22–24 March 2007; pp. 121–126. [Google Scholar]
- Doh, E.; Yoo, J.; Lee, H.; Park, J.; Yun, K.-S. Microfabrication of Three-Axis Tactile Feedback Actuator for Robot-Assisted Surgery. Jpn. J. Appl. Phys. 2013, 52, 17302. [Google Scholar] [CrossRef]
- Fukuda, T.; Morita, H.; Arai, F.; Ishihara, H.; Matsuura, H. Micro resonator using electromagnetic actuator for tactile display. In Proceedings of the 1997 International Symposium on Micromechanics and Human Science, Nagoya, Japan, 5–8 October 1997; pp. 143–148. [Google Scholar] [CrossRef]
- Kajimoto, H.; Kawakami, N.; Maeda, T.; Tachi, S. Electrocutaneous display as an interface to a virtual tactile world. In Proceedings of the IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001; pp. 289–290. [Google Scholar] [CrossRef]
- Tang, H.; Beebe, D. A microfabricated electrostatic haptic display for persons with visual impairments. IEEE Trans. Rehabil. Eng. 1998, 6, 241–248. [Google Scholar] [CrossRef]
- Wagner, C.; Lederman, S.; Howe, R. A tactile shape display using RC servomotors. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, FL, USA, 24–25 March 2002; pp. 354–355. [Google Scholar]
- Ikei, Y.; Wakamatsu, K.; Fukuda, S. Texture presentation by vibratory tactile display-image based presentation of a tactile texture. In Proceedings of the IEEE 1997 Annual International Symposium on Virtual Reality, Albuquerque, NM, USA, 1–5 March 1997; pp. 199–205. [Google Scholar]
- Taylor, P.M.; Hosseini-Sianaki, A.; Varley, C.J. Anelectrorheological fluid-based tactile array for virtual environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 18–23. [Google Scholar]
- Sato, K.; Igarashi, E.; Kimura, M. Development of non-constrained master arm with tactile feedback device. In Proceedings of the Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Pisa, Italy, 19–22 June 1991; Volume 1, pp. 334–338. [Google Scholar]
- Konishi, S.; Kawai, F.; Cusin, P. Thin flexible end-effector using pneumatic balloon actuator. Sensors Actuators A Phys. 2001, 89, 28–35. [Google Scholar] [CrossRef]
- Monkman, G.J.; Taylor, P.M. Thermal tactile sensing. IEEE Trans. Robot. Autom. 1993, 9, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Wang, Y.; Wang, H.; Lee, S.; Yokota, T.; Someya, T. Skin Electronics: Next-Generation Device Platform for Virtual and Augmented Reality. Adv. Funct. Mater. 2021, 2009602. [Google Scholar] [CrossRef]
- Lim, S.-C.; Lee, H.-K.; Doh, E.; Yun, K.-S.; Park, J. Tactile display with tangential and normal skin displacement for robot-assisted surgery. Adv. Robot. 2014, 28, 859–868. [Google Scholar] [CrossRef]
- Gallo, S.; Rognini, G.; Santos-Carreras, L.; Vouga, T.; Blanke, O.; Bleuler, H. Encoded and cross modal thermal stimulation through a fingertip-sized haptic display. Front. Robot. AI 2015, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.-H.; Kwon, D.-S. Effect of temperature in perceiving tactile stimulus using a thermo-tactile display. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 266–271. [Google Scholar]
- Yang, G.-H.; Kyung, K.-U.; Srinivasan, M.; Kwon, D.-S. Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3917–3922. [Google Scholar]
- Guiatni, M.; Kheddar, A. Theoretical and experimental study of a heat transfer model for thermal feedback in virtual environments. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2996–3001. [Google Scholar]
- Citerin, J.; Pocheville, A.; Kheddar, A. A touch rendering device in a virtual environment with kinesthetic and thermal feedback. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3923–3928. [Google Scholar]
- Ho, H.-N.; Jones, L.A. Development and evaluation of a thermal display for material identification and discrimination. ACM Trans. Appl. Percept. 2007, 4, 13. [Google Scholar] [CrossRef]
- Ino, S.; Shimizu, S.; Odagawa, T.; Sato, M.; Takahashi, M.; Izumi, T.; Ifukube, T. A tactile display for presenting quality of materials by changing the temperature of skin surface. In Proceedings of the 1993 2nd IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, 3–5 November 1993; pp. 220–224. [Google Scholar]
- Hou, C.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Highly Conductive, Flexible, and Compressible All-Graphene Passive Electronic Skin for Sensing Human Touch. Adv. Mater. 2014, 26, 5018–5024. [Google Scholar] [CrossRef]
- Nakatani, M.; Sato, K.; Sato, K.; Kawana, Y.; Takai, D.; Minamizawa, K.; Tachi, S. A Novel Multimodal Tactile Module that Can Provide Vibro-Thermal Feedback. In Proceedings of the AsiaHaptic2016, Kashiwanoha, Japan, 29 November–1 December 2016; pp. 437–443. [Google Scholar]
- Oh, J.; Kim, S.; Lee, S.; Jeong, S.; Ko, S.H.; Bae, J. A Liquid Metal Based Multimodal Sensor and Haptic Feedback Device for Thermal and Tactile Sensation Generation in Virtual Reality. Adv. Funct. Mater. 2020, 2007772. [Google Scholar] [CrossRef]
- Friedman, R.M.; Hester, K.D.; Green, B.G.; LaMotte, R.H. Magnitude estimation of softness. Exp. Brain Res. 2008, 191, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.A.; Ho, H.-N. Warm or Cool, Large or Small? The Challenge of Thermal Displays. IEEE Trans. Haptics 2008, 1, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.C. Temperature can sharpen tactile acuity. Percept. Psychophys. 1982, 31, 577–580. [Google Scholar] [CrossRef]
- Gescheider, G.; Thorpe, J.M.; Goodarz, J.; Bolanowski, S.J. The effects of skin temperature on the detection and discrimination of tactile stimulation. Somatosens. Mot. Res. 1997, 14, 181–188. [Google Scholar] [CrossRef]
- Harazin, B.; Harazin-Lechowska, A.; Kałamarz, J. Effect of individual finger skin temperature on vibrotactile perception threshold. Int. J. Occup. Med. Environ. Health 2013, 26, 930–939. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.-H.; Kim, S.-H.; Yun, K.-S. Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad. Actuators 2021, 10, 60. https://doi.org/10.3390/act10030060
Lee E-H, Kim S-H, Yun K-S. Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad. Actuators. 2021; 10(3):60. https://doi.org/10.3390/act10030060
Chicago/Turabian StyleLee, Eun-Hyuk, Sang-Hoon Kim, and Kwang-Seok Yun. 2021. "Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad" Actuators 10, no. 3: 60. https://doi.org/10.3390/act10030060
APA StyleLee, E. -H., Kim, S. -H., & Yun, K. -S. (2021). Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad. Actuators, 10(3), 60. https://doi.org/10.3390/act10030060