A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot
Abstract
:1. Introduction
2. System Dynamic Model and Control Idea
3. Trajectory Planning
4. Control Scheme
4.1. Tracking Controller Design
4.2. Stabilization Controller Design
- 1
- Tracking control stage: Swinging the vertical Acrobot to a small zone near the UTP by using the PD-based tracking controller;
- 2
- Stable control stage: Stabilizing the vertical Acrobot at the UTP by using the pole-assignment-based stabilization controller.
5. Simulation Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DIP | Downward initial position |
UTP | Upward target position |
VUM | Vertical underactuated manipulator |
ALM | Approximate linear model |
References
- Zhang, T.; Zhang, W.J.; Gupta, M.M. An underactuated self-reconfigurable robot and the reconfiguration evolution. Mech. Mach. Theory 2018, 124, 248–258. [Google Scholar] [CrossRef]
- Wang, F.; Qian, Z.; Yan, Z.; Yuan, C.; Zhang, W. A novel resilient robot: Kinematic analysis and experimentation. IEEE Access 2020, 8, 2885–2892. [Google Scholar] [CrossRef]
- He, B.; Liu, Y.J. Underactuated robotics: A review. Int. J. Adv. Robot. Syst. 2019, 16, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Lai, X.Z.; Zhang, P.; Wu, M. A unified and simple control strategy for a class of n-link vertical underactuated manipulator. ISA Trans. 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.N. A survey of underactuated mechanical systems. IET Control Appl. 2013, 7, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.D.; Wang, Y.W.; Ye, W.J.; Su, C.-Y. Control strategy based on Fourier transformation and intelligent optimization for planar pendubot. Inf. Sci. 2019, 491, 279–288. [Google Scholar] [CrossRef]
- Yang, X.B.; Zheng, X.L. Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: Theory and experiments. IEEE Trans. Ind. Electron. 2018, 65, 7229–7238. [Google Scholar] [CrossRef]
- Wang, L.J.; Lai, X.Z.; Zhang, P.; Wu, M. Single controller design based on integrated trajectory for three-link vertical underactuated manipulators with first active joint. Int. J. Control 2021. [Google Scholar] [CrossRef]
- Mathis, F.B.; Jafari, R.; Mukherjee, R. Impulsive actuation in robot manipulators: Experimental verification of pendubot swing-up. IEEE/ASME Trans. Mechatron. 2014, 19, 1469–1474. [Google Scholar] [CrossRef]
- Zhang, A.C.; Qiu, J.L.; Yang, C.D.; He, H.B. Stabilization of underactuated four-link gymnast robot using torque-coupled method. Int. J. Non Linear Mech. 2015, 77, 299–306. [Google Scholar] [CrossRef]
- Zhang, A.C.; She, J.H.; Lai, X.Z.; Wu, M. Global stabilization control of acrobot based on equivalent-input-disturbance approach. IFAC Proc. Vol. 2011, 44, 14596–14601. [Google Scholar] [CrossRef]
- Gao, X.S.; Yan, L.; Gerada, C. Modeling and analysis in trajectory tracking control for wheeled mobile robots with wheel skidding and slipping: Disturbance rejection perspective. Actuators 2021, 10, 222. [Google Scholar] [CrossRef]
- Brockett, R.W. Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 1983, 27, 181–191. [Google Scholar]
- Oriolo, G.; Nakamur, Y. Control of mechanical systems with second order nonholonomic constraints: Underactuated manipulator. In Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 2398–2403. [Google Scholar]
- Banavar, R.N.; Mahindrakar, A.D. A non-smooth control law and timeoptimality notions for the acrobot. Int. J. Control 2005, 78, 1166–1173. [Google Scholar] [CrossRef]
- Xin, X.; Liu, Y.N. Reduced-order stable controllers for two-link underactuated planar robots. Automatica 2013, 49, 2176–2183. [Google Scholar] [CrossRef]
- Jafari, R.; Mathis, F.B.; Mukherjee, R.; Khalil, H.K. Enlarging the region of attraction of equilibria of underactuated systems using impulsive inputs. IEEE Trans. Control Syst. Technol. 2016, 24, 334–340. [Google Scholar] [CrossRef]
- Horibe, T.; Zhou, B.; Hara, S.; Tsubakino, D. Quantitative measure for nonlinear unstable systems based on the region of attraction and its application to designing parameter optimization-inverted pendulum example. Adv. Robot. 2018, 32, 399–410. [Google Scholar] [CrossRef]
- Horibe, T.; Sakamoto, N. Nonlinear optimal control for swing up and stabilization of the acrobot via stable manifold approach: Theory and experiment. IEEE Trans. Control Syst. Technol. 2019, 27, 2374–2387. [Google Scholar] [CrossRef]
- Yaman, U.; Silik, Y. Control of rotary inverted pendulum by using on-off type of cold gas thrusters. Actuators 2020, 9, 95. [Google Scholar]
- Izumi, K.; Kamada, Y.; Ichida, K. A switching control of underactuated manipulators by introducing a definition of monotonically decreasing energy. In Proceedings of the 2008 6th IEEE International Conference on Industrial Informatics, Daejeon, Korea, 13–16 July 2008; pp. 383–388. [Google Scholar]
- Eom, M.; Chwa, D. Robust swing-up and balancing control using a nonlinear disturbance observer for the pendubot system with dynamic friction. IEEE Trans. Robot. 2015, 31, 331–343. [Google Scholar] [CrossRef]
- Lai, X.Z.; Zhang, A.C.; She, J.H.; Wu, M. Motion control of underactuated three-link gymnast robot based on combination of energy and posture. IET Control Theory Appl. 2011, 5, 1484–1493. [Google Scholar] [CrossRef]
- Liu, Y.N.; Xin, X. Global motion analysis of energy-based control for 3-link planar robot with a single actuator at the first joint. Nonlinear Dyn. 2017, 88, 1749–1768. [Google Scholar] [CrossRef]
- Xin, X.; Kaneda, M. Analysis of the energy-based swing-up control of the Acrobot. Int. J. Robust Nonlinear Control 2010, 17, 1503–1524. [Google Scholar] [CrossRef]
- Mobayen, S. Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems. Complexity 2016, 21, 117–124. [Google Scholar] [CrossRef]
- Fantoni, I.; Lozano, R.; Spong, M.W. Energy based control of the Pendubot. IEEE Trans. Autom. Control 2000, 45, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.Z.; She, J.H.; Yang, S.X.; Wu, M. Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 389–398. [Google Scholar]
- Lai, X.Z.; Zhang, A.C.; Wu, M.; She, J.H. Singularity-avoiding swing-up control for underactuated three-link gymnast robot using virtual coupling between control torques. Int. J. Robust Nonlinear Control 2015, 25, 207–221. [Google Scholar] [CrossRef]
- Wang, L.J.; Lai, X.Z.; Zhang, P.; Wu, M. A control strategy based on trajectory planning and optimization for two-link underactuated manipulators in vertical plane. IEEE Trans. Syst. Man Cybern. Syst. 2021. [Google Scholar] [CrossRef]
- Baek, I.; Kim, H.; Lee, S.; Hwang, S.; Shin, K. Swing-up control design for spring attatched passive joint acrobot. Int. J. Precis. Eng. Manuf. 2020, 21, 1865–1874. [Google Scholar] [CrossRef]
- Zhu, L.; Qiu, J.; Karimi, H.R. Region stabilization of switched neural networks with multiple modes and multiple equilibria: A pole assignment method. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3280–3293. [Google Scholar] [CrossRef]
Variable | Meaning |
---|---|
j | : Passive link; : Active link |
Mass of j-th link | |
Length of j-th link | |
Lotary inertia of j-th link | |
Distance between j-th joint and centroid of the j-th link | |
Angle of j-th link | |
g | Acceleration of gravity |
Torque |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Chen, S.; Zhang, P.; She, J.; Lai, X. A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot. Actuators 2021, 10, 308. https://doi.org/10.3390/act10120308
Wang L, Chen S, Zhang P, She J, Lai X. A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot. Actuators. 2021; 10(12):308. https://doi.org/10.3390/act10120308
Chicago/Turabian StyleWang, Lejun, Siyu Chen, Pan Zhang, Jinhua She, and Xuzhi Lai. 2021. "A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot" Actuators 10, no. 12: 308. https://doi.org/10.3390/act10120308
APA StyleWang, L., Chen, S., Zhang, P., She, J., & Lai, X. (2021). A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot. Actuators, 10(12), 308. https://doi.org/10.3390/act10120308