Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens
Abstract
:1. Introduction
2. Material and Methods
2.1. Microbiological Culture
2.2. Pathogen Identification
2.3. Determination of the Concentrations of Acute-Phase Proteins
2.4. SPARCL Immunoassay Milk Validation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, K.L.; Hogan, J.S. The world of mastitis, in NMC and AABP. In Proceedings of the 2nd International Symposium of Mastitis and Milk Quality, Vancouver, BC, Canada, 13–15 September 2001; pp. 1–12. [Google Scholar]
- Tilocca, B.; Costanzo, N.; Morittu, V.M.; Spina, A.A.; Soggiu, A.; Britti, D.; Roncada, P.; Piras, C. Milk microbiota: Characterization methods and role in cheese production. J. Proteomics 2020, 210, 103534. [Google Scholar] [CrossRef] [PubMed]
- Artursson, K.; Schelin, J.; Thisted Lambertz, S.; Hansson, I.; Olsson Engvall, E. Foodborne pathogens in unpasteurized milk in Sweden. Int. J. Food Microbiol. 2018, 284, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Deb, R.; Kumar, A.; Chakraborty, S.; Verma, A.K.; Tiwari, R.; Dhama, K.; Singh, U.; Kumar, S. Trends in diagnosis and control of bovine mastitis: A review. Pakistan J. Biol. Sci. 2013, 16, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuenzalida, M.J.; Fricke, P.M.; Ruegg, P.L. The association between occurrence and severity of subclinical and clinical mastitis on pregnancies per artificial insemination at first service of Holstein cows. J. Dairy Sci. 2015, 98, 3791–3805. [Google Scholar] [CrossRef] [Green Version]
- Pinzón-Sánchez, C.; Ruegg, P.L. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. J. Dairy Sci. 2011, 94, 3397–3410. [Google Scholar] [CrossRef] [Green Version]
- Smith, B. Large Animal Internal Medicine, 5th ed.; Mosby: St. Louis, MO, USA, 2014; ISBN 9780323262330. [Google Scholar]
- De Freitas Guimarães, F.; Nóbrega, D.B.; Richini-Pereira, V.B.; Marson, P.M.; de Figueiredo Pantoja, J.C.; Langoni, H. Enterotoxin genes in coagulase-negative and coagulase-positive staphylococci isolated from bovine milk. J. Dairy Sci. 2013, 96, 2866–2872. [Google Scholar] [CrossRef] [Green Version]
- Middleton, J.R.; Hardin, D.; Steevens, B.; Randle, R.; Tyler, J.W. Use of somatic cell counts and California mastitis test results from individual quarter milk samples to detect subclinical intramammary infection in dairy cattle from a herd with a high bulk tank somatic cell count. J. Am. Vet. Med. Assoc. 2004, 224, 419–423. [Google Scholar] [CrossRef]
- Whyte, D.; Walmsley, M.; Liew, A.; Claycomb, R.; Mein, G. Chemical and rheological aspects of gel formation in the California Mastitis Test. J. Dairy Res. 2005, 72, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Eckersall, P.D.; Young, F.J.; Nolan, A.M.; Knight, C.H.; McComb, C.; Waterston, M.M.; Hogarth, C.J.; Scott, E.M.; Fitzpatrick, J.L. Acute Phase Proteins in Bovine Milk in an Experimental Model of Staphylococcus aureus Subclinical Mastitis. J. Dairy Sci. 2006, 89, 1488–1501. [Google Scholar] [CrossRef]
- Thomas, F.C.; Geraghty, T.; Simões, P.B.A.; Mshelbwala, F.M.; Haining, H.; Eckersall, P.D. A pilot study of acute phase proteins as indicators of bovine mastitis caused by different pathogens. Res. Vet. Sci. 2018, 119, 176–181. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteomics 2012, 75, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.C.; Waterston, M.; Hastie, P.; Parkin, T.; Haining, H.; Eckersall, P.D. The major acute phase proteins of bovine milk in a commercial dairy herd. BMC Vet. Res. 2015, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, P.B.A.; Campbell, M.; Viora, L.; Gibbons, J.; Geraghty, T.E.; Eckersall, P.D.; Zadoks, R.N. Pilot study into milk haptoglobin as an indicator of udder health in heifers after calving. Res. Vet. Sci. 2018, 116, 83–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceciliani, F.; Pocacqua, V.; Lecchi, C.; Fortin, R.; Rebucci, R.; Avallone, G.; Bronzo, V.; Cheli, F.; Sartorelli, P. Differential expression and secretion of a 1 -acid glycoprotein in bovine milk. J. Dairy Res. 2007, 74, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Van Molle, W.; Libert, C.; Fiers, W.; Brouckaert, P. Alpha 1-acid glycoprotein and alpha 1-antitrypsin inhibit TNF-induced but not anti-Fas-induced apoptosis of hepatocytes in mice. J. Immunol. 1997, 159, 3555–3564. [Google Scholar]
- Hochepied, T.; Berger, F.G.; Baumann, H.; Libert, C. α1-acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev. 2003, 14, 25–34. [Google Scholar] [CrossRef]
- Horadagoda, N.U.; Knox, K.M.; Gibbs, H.A.; Reid, S.W.; Horadagoda, A.; Edwards, S.E.; Eckersall, P.D. Acute phase proteins in cattle: Discrimination between acute and chronic inflammation. Vet. Rec. 1999, 144, 437–441. [Google Scholar] [CrossRef]
- Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef]
- Whelehan, C.J.; Meade, K.G.; Eckersall, P.D.; Young, F.J.; O' Farrelly, C. Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet. Immunol. Immunopathol. 2011, 140, 181–189. [Google Scholar] [CrossRef]
- Hussein, H.A.; El-Razik, K.A.E.H.A.; Gomaa, A.M.; Elbayoumy, M.K.; Abdelrahman, K.A.; Hosein, H.I. Milk amyloid A as a biomarker for diagnosis of subclinical mastitis in cattle. Vet. World 2018, 11, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, P.; Hinchcliff, K.W.; Done, S.; Gruenberg, W. A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; Saunders Ltd.: Nottingham, UK, 2016; Volume 11, ISBN 9780702070587. [Google Scholar]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E.S. Veterinary Microbiology and Microbial Disease, 2nd ed.; WILEY-BLACKWELL: Hoboken, NJ, USA, 2011; ISBN 978-1-405-15823-7. [Google Scholar]
- Whitford, H.W.; Rosenbuch, R.F.; Lauerman, L.H. Mycoplasmosis in Animals: Laboratory Diagnosis; Iowa State University Press: Ames, IA, USA, 1994; ISBN 0-8138-2491-5. [Google Scholar]
- Pretto, L.G.; Muller, E.E.; Freitas, J.C.; Mettifogo, E.; Buzihani, M.; Yamaguti, M.; Salvador, R. Mastite bovina por Mycoplasma bovis em rebanhos leiteiros. Pesqui. Vet. Bras. 2001, 21, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Koneman, E.W.; Allen, S.D.; Janda, W.M.; Schreckenberger, P.C.; Winn, J.R. Diagnóstico Microbiológico-Texto e Atlas Colorido, 6th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Pyörälä, S.; Hovinen, M.; Simojoki, H.; Fitzpatrick, J.; Eckersall, P.D.; Orro, T. Acute phase proteins in milk in naturally acquired bovine mastitis caused by different pathogens. Vet. Rec. 2011, 168, 535. [Google Scholar] [CrossRef] [PubMed]
- Kalmus, P.; Simojoki, H.; Pyörälä, S.; Taponen, S.; Holopainen, J.; Orro, T. Milk haptoglobin, milk amyloid A, and N-acetyl-β-d-glucosaminidase activity in bovines with naturally occurring clinical mastitis diagnosed with a quantitative PCR test. J. Dairy Sci. 2013, 96, 3662–3670. [Google Scholar] [CrossRef] [Green Version]
- Schukken, Y.; Chuff, M.; Moroni, P.; Gurjar, A.; Santisteban, C.; Welcome, F.; Zadoks, R. The “Other” Gram-Negative Bacteria in Mastitis. Klebsiella, Serratia, and More. Vet. Clin. North Am. Food Anim. Pract. 2012, 28, 239–256. [Google Scholar] [CrossRef]
- Rainard, P.; Riollet, C. Innate immunity of the bovine mammary gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef] [Green Version]
- El Ghmati, S.M.; Van Hoeyveld, E.M.; Van Strijp, J.G.; Ceuppens, J.L.; Stevens, E.A. Identification of haptoglobin as an alternative ligand for CD11b/CD18. J. Immunol. 1996, 156, 2542–2552. [Google Scholar]
- Thomas, F.C.; Mudaliar, M.; Tassi, R.; McNeilly, T.N.; Burchmore, R.; Burgess, K.; Herzyk, P.; Zadoks, R.N.; Eckersall, P.D. Mastitomics, the integrated omics of bovine milk in an experimental model of: Streptococcus uberis mastitis: 3. Untargeted metabolomics. Mol. Biosyst. 2016, 12, 2762–2769. [Google Scholar] [CrossRef]
- Pedersen, L.H.; Aalbæk, B.; Røntved, C.M.; Ingvartsen, K.L.; Sorensen, N.S.; Heegaard, P.M.H.; Jensen, H.E. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J. Comp. Pathol. 2003, 128, 156–164. [Google Scholar] [CrossRef]
- Bannerman, D.D.; Paape, M.J.; Goff, J.P.; Kimura, K.; Lippolis, J.D.; Hope, J.C. Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet. Res. 2004, 35, 681–700. [Google Scholar] [CrossRef] [Green Version]
- Bannerman, D.D.; Paape, M.J.; Hare, W.R.; Sohn, E.J. Increased Levels of LPS-Binding Protein in Bovine Blood and Milk Following Bacterial Lipopolysaccharide Challenge. J. Dairy Sci. 2003, 86, 3128–3137. [Google Scholar] [CrossRef] [Green Version]
- Suojala, L.; Orro, T.; Järvinen, H.; Saatsi, J.; Pyörälä, S. Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows. Acta Vet. Scand. 2008, 50, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannerman, D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci. 2009, 87, 10–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyorala, S.; Jousimies-Somer, H.; Mero, M. Clinical, bacteriological and therapeutic aspects of bovine mastitis caused by aerobic and anaerobic pathogens. Br. Vet. J. 1992, 148, 54–62. [Google Scholar] [CrossRef]
- Sutra, L.; Poutrel, B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol. 1994, 40, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauf, A.C.W.; Rosenbusch, R.F.; Paape, M.J.; Bannerman, D.D. Innate Immune Response to Intramammary Mycoplasma bovis Infection. J. Dairy Sci. 2007, 90, 3336–3348. [Google Scholar] [CrossRef] [Green Version]
- Elhadidy, M.; Zahran, E. Biofilm mediates Enterococcus faecalis adhesion, invasion and survival into bovine mammary epithelial cells. Lett. Appl. Microbiol. 2014, 58, 248–254. [Google Scholar] [CrossRef]
- Wu, X.; Hou, S.; Zhang, Q.; Ma, Y.; Zhang, Y.; Kan, W.; Zhao, X. Prevalence of virulence and resistance to antibiotics in pathogenic enterococci isolated from mastitic cows. J. Vet. Med. Sci. 2016, 78, 1663–1668. [Google Scholar] [CrossRef] [Green Version]
- Taponen, S.; Simojoki, H.; Haveri, M.; Larsen, H.D.; Pyörälä, S. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet. Microbiol. 2006, 115, 199–207. [Google Scholar] [CrossRef]
- Bochniarz, M.; Zdzisińska, B.; Wawron, W.; Szczubiał, M.; Dąbrowski, R. Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative staphylococci. J. Dairy Sci. 2017, 100, 9674–9680. [Google Scholar] [CrossRef] [Green Version]
- Guha, A.; Guha, R.; Gera, S. Comparison of α1-antitrypsin, α1-acid glycoprotein, fibrinogen and NOx as indicator of subclinical Mastitis in Riverine Buffalo (Bubalus bubalis). Asian-Australas. J. Anim. Sci. 2013, 26, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Eckersall, P.D.; Young, F.J.; McComb, C.; Hogarth, C.J.; Safi, S.; Weber, A.; McDonald, T.; Nolan, A.M.; Fitzpatrick, J.L. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet. Rec. 2001, 148, 35–41. [Google Scholar] [CrossRef]
- Jiang, L.; Sørensen, P.; Røntved, C.; Vels, L.; Ingvartsen, K.L. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide. BMC Genom. 2008, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisaeda, K.; Arima, H.; Sonobe, T.; Nasu, M.; Hagiwara, K.; Kirisawa, R.; Takahashi, T.; Kikuchi, N.; Nagahata, H. Changes in Acute-Phase Proteins and Cytokines in Serum and Milk Whey from Dairy Cows with Naturally Occurring Peracute Mastitis Caused by Klebsiella pneumoniae and the Relationship to Clinical Outcome. J. Vet. Med. Sci. 2011, 73, 1399–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef]
- Bannerman, D.D.; Paape, M.J.; Hare, W.R.; Hope, J.C. Characterization of the Bovine Innate Immune Response to Intramammary Infection with Klebsiella pneumoniae. J. Dairy Sci. 2004, 87, 2420–2432. [Google Scholar] [CrossRef] [Green Version]
- Bannerman, D.D.; Paape, M.J.; Lee, J.-W.; Zhao, X.; Hope, J.C.; Rainard, P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 2004, 11, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Sharma, A.; Sindhu, N.; Deora, A. Acute phase proteins as indicators of inflammation in Streptococcal and Staphylococcal mastitis in buffaloes. Haryana Vet. 2014, 53, 46–49. [Google Scholar]
- Vanderhaeghen, W.; Piepers, S.; Leroy, F.; Van Coillie, E.; Haesebrouck, F.; De Vliegher, S. Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J. Dairy Sci. 2014, 97, 5275–5293. [Google Scholar] [CrossRef] [Green Version]
- Roncada, P.; Piras, C.; Soggiu, A.; Turk, R.; Urbani, A.; Bonizzi, L. Farm animal milk proteomics. J. Proteom. 2012, 75, 4259–4274. [Google Scholar] [CrossRef]
Precision | Accuracy: Parallel Dilutions | Detection Limit (ng/mL) | |||
---|---|---|---|---|---|
Intra-Assay CV | Inter-Assay CV | Mean (+SD) of O/E (%) | In Buffer | In Milk | |
α-1 acid glycoprotein | 5.3 | 30.2 | 104.4 ± 11.9 | 1.95 | 97.5 |
C-reactive protein | 2.7 | 7.2 | 81.1 ± 14.1 | 0.78 | 39 |
Haptoglobin | 6.2 | 10.7 | 100.3 ± 3.4 | 1.95 | 97.5 |
Milk amyloid-A (SAA3) | 3.0 | 5.7 | 96.0 ± 5.3 | 0.47 | 23.5 |
Haptoglobin | Serum Amyloid A | α1-Acid Glycoprotein | C-Reactive Protein | |
---|---|---|---|---|
Klebsiellapneumoniae (N = 18) | 206.1 A (0.0–1113.3) [126.3–468.1] | 52.4 A,B (2.0–178.8) [31.9–97.1] | 34.9 A,B (14.4–305.0) [22.4–145.3] | 1.6 A (0.1–8.0) [0.5–4.4] |
Escherichia coli (N = 24) | 164.1 A (0.0–2009.4) [71.7–305.1] | 20.5 C (0.0–264.0) [8.6–47.2] | 47.3 A (6.8–892.9) [24.8–155.7] | 2.0 A (0.1–7.8) [0.8–4.8] |
Staphylococcus aureus (N = 15) | 158.7 A,B (0.0–596.1) [0.0–300.0] | 38.2 B (13.3–129.5) [21.8–94.9] | 51.3 A (11.9–289.9) [17.3–207.4] | 0.8 B (0.0–9.2) [0.1–2.0] |
Environmental Streptococcus (N = 16) | 179.0 A (0.0–812.2) [130.2–363.7] | 63.8 A (21.0–151.4) [48.4–70.6] | 29.7 B (11.3–100.7) [19.0–49.3] | 0.6 B (0.1–5.4) [0.3–1.4] |
Mycoplasma spp. (N = 18) | 102.0 B (0.0–582.9) [0.0–332.8] | 35.2 B(0.0–102.2) [17.4–51.5] | 24.7 B (10.6–427.5) [15.1–79.2] | 0.6 B (0.1–6.8) [0.3–2.1] |
Enterococcus spp. (N = 18) | 43.0 C (0.0–213.0) [0.0–127.3] | 55.4 A,B(0.0–250.0) [26.8–86.1] | 17.9 C (10.1–297.5) [15.8–22.2] | 0.2 C (0.1–2.6) [0.1–0.7] |
CNS (N = 24) | 0.0 C (0.0–319.1) [0.0–66.3] | 14.9 C (0.0–141.7) [8.7–37.7] | 9.7 C (5.9–42.6) [7.8–9.7] | 0.1 C (0.1–3.5) [0.1–0.4] |
APPs | Hp | SAA | AGP | CRP |
---|---|---|---|---|
Hp | 1.00 | |||
SAA | 0.39 * | 1.00 | ||
AGP | 0.60 * | 0.11 | 1.00 | |
CRP | 0.55 * | 0.05 | 0.72 * | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalanezi, F.M.; Schmidt, E.M.S.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Cerri, R.L.A.; Chadwick, C.; Langoni, H. Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens. Pathogens 2020, 9, 706. https://doi.org/10.3390/pathogens9090706
Dalanezi FM, Schmidt EMS, Joaquim SF, Guimarães FF, Guerra ST, Lopes BC, Cerri RLA, Chadwick C, Langoni H. Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens. Pathogens. 2020; 9(9):706. https://doi.org/10.3390/pathogens9090706
Chicago/Turabian StyleDalanezi, Felipe M., Elizabeth M. S. Schmidt, Sâmea F. Joaquim, Felipe F. Guimarães, Simoni T. Guerra, Bruna C. Lopes, Ronaldo L. A. Cerri, Christopher Chadwick, and Hélio Langoni. 2020. "Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens" Pathogens 9, no. 9: 706. https://doi.org/10.3390/pathogens9090706
APA StyleDalanezi, F. M., Schmidt, E. M. S., Joaquim, S. F., Guimarães, F. F., Guerra, S. T., Lopes, B. C., Cerri, R. L. A., Chadwick, C., & Langoni, H. (2020). Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens. Pathogens, 9(9), 706. https://doi.org/10.3390/pathogens9090706