Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria
Abstract
:1. Introduction
- the type of microbial strains sensitive or resistant to the compound;
- the adequate chemical concentrations; and
- the contact time.
2. In Vitro Experimental Test Performed with Hydrogen Peroxide (HP) and Hydrogen Peroxide Vapor (HPV)
3. Experimental Test Performed in Hospital Settings with Hydrogen Peroxide Vapor (HPV)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbut, F.; Menuet, D.; Verachten, M.; Girou, E. Comparison of the Efficacy of a Hydrogen Peroxide Dry-Mist Disinfection System and Sodium Hypochlorite Solution for Eradication of Clostridium difficile Spores. Infect. Control Hosp. Epidemiol. 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omidbakhsh, N.; Sattar, S.A. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Am. J. Infect. Control 2006, 34, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.; Weber, D. Infection control: The role of disinfection and sterilization. J. Hosp. Infect. 1999, 43, S43–S55. [Google Scholar] [CrossRef]
- White, L.F.; Dancer, S.; Robertson, C. A microbiological evaluation of hospital cleaning methods. Int. J. Environ. Health Res. 2007, 17, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.B. Catalase activity in Escherichia coli. J. Bacteriol. 1952, 64, 527–530. [Google Scholar] [CrossRef] [Green Version]
- Venugopalan, M.; Shih, A.-L. Reactions of hydrogen peroxide vapor dissociated in a microwave plasma. Plasma Chem. Plasma Process. 1981, 1, 191–200. [Google Scholar] [CrossRef]
- Klapes, N.A.; Vesley, D. Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant. Appl. Environ. Microbiol. 1990, 56, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Andersen, B.; Rasch, M.; Hochlin, K.; Jensen, F.-H.; Wismar, P.; Fredriksen, J.-E. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 2006, 62, 149–155. [Google Scholar] [CrossRef]
- Gupta, A.; Silver, S. Molecular Genetics: Silver as a biocide: Will resistance become a problem? Nat. Biotechnol. 1998, 16, 888. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.; French, G.L. The Role Played by Contaminated Surfaces in the Transmission of Nosocomial Pathogens. Infect. Control Hosp. Epidemiol. 2011, 32, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Dryden, M.; Parnaby, R.; Dailly, S.; Lewis, T.; Davis-Blues, K.; Otter, J.A.; Kearns, A.M. Hydrogen peroxide vapour decontamination in the control of a polyclonalmeticillin-resistant Staphylococcus aureus outbreak on a surgical ward. J. Hosp. Infect. 2008, 68, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K.; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havill, N.L.; Moore, B.A.; Boyce, J.M. Comparison of the Microbiological Efficacy of Hydrogen Peroxide Vapor and Ultraviolet Light Processes for Room Decontamination. Infect. Control Hosp. Epidemiol. 2012, 33, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, W.R. Selected Aspects of the Socioeconomic Impact of Nosocomial Infections: Morbidity, Mortality, Cost, and Prevention. Infect. Control Hosp. Epidemiol. 1996, 17, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, A.; Pultz, N.J.; Gries, D.M.; Ray, A.J.; Eckstein, E.C.; Aron, D.C.; Donskey, C.J. Acquisition of Nosocomial Pathogens on Hands After Contact With Environmental Surfaces Near Hospitalized Patients. Infect. Control Hosp. Epidemiol. 2004, 25, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 2009, 73, 378–385. [Google Scholar] [CrossRef]
- Huang, S.S.; Datta, R.; Platt, R. Risk of Acquiring Antibiotic-Resistant Bacteria From Prior Room Occupants. Arch. Intern. Med. 2006, 166, 1945–1951. [Google Scholar] [CrossRef] [Green Version]
- Nseir, S.; Blazejewski, C.; Lubret, R.; Wallet, F.; Courcol, R.; Durocher, A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin. Microbiol. Infect. 2011, 17, 1201–1208. [Google Scholar] [CrossRef] [Green Version]
- Carling, P.C.; Parry, M.F.; Bruno-Murtha, L.A.; Dick, B. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit. Care Med. 2010, 38, 1054–1059. [Google Scholar] [CrossRef]
- Falagas, M.E.; Thomaidis, P.; Kotsantis, I.; Sgouros, K.; Samonis, G.; Karageorgopoulos, D.E. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: A systematic review. J. Hosp. Infect. 2011, 78, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A.; Linn, S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 1987, 169, 2967–2976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Lee, C.; Cho, M.; Yoon, J. Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res. 2008, 42, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Absalan, A.; Ehrampoush, M.H.; Davoudi, M.; Vakili, T.; Ebrahimi, A. Antibacterial effects of hydrogen peroxide and silver composition on selected pathogenic enterobacteriaceae. Int. J. Environ. Health Eng. 2012, 1, 23–29. [Google Scholar] [CrossRef]
- De Giglio, O.; Coretti, C.; Lovero, G.; Barbuti, G.; Caggiano, G. Pilot study on the antibacterial activity of hydrogen peroxide and silver ions in the hospital environment. Ann. Ig 2014, 26, 181–185. [Google Scholar] [PubMed]
- Lemmen, S.; Scheithauer, S.; Häfner, H.; Yezli, S.; Mohr, M.; Otter, J.A. Evaluation of hydrogen peroxide vapor for the inactivation of nosocomial pathogens on porous and nonporous surfaces. Am. J. Infect. Control 2015, 43, 82–85. [Google Scholar] [CrossRef]
- Herruzo, R.; Vizcaino, M.; Herruzo, I. Quantifying Glosair™ 400 efficacy for surface disinfection of American Type Culture Collection strains and micro-organisms recently isolated from intensive care unit patients. J. Hosp. Infect. 2014, 87, 175–178. [Google Scholar] [CrossRef]
- French, G.L.; Otter, J.; Shannon, K.; Adams, N.; Watling, D.; Parks, M. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): A comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J. Hosp. Infect. 2004, 57, 31–37. [Google Scholar] [CrossRef]
- Murdoch, L.; Bailey, L.; Banham, E.; Watson, F.; Adams, N.; Chewins, J. Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system. Lett. Appl. Microbiol. 2016, 63, 178–182. [Google Scholar] [CrossRef]
- Watson, F.; Keevil, C.W.; Wilks, S.A.; Chewins, J. Modelling vaporised hydrogen peroxide efficacy against mono-species biofilms. Sci. Rep. 2018, 8, 1–17. [Google Scholar] [CrossRef]
- Perumal, P.; Wand, M.E.; Sutton, J.M.; Bock, L.J. Evaluation of the effectiveness of hydrogen-peroxide-based disinfectants on biofilms formed by Gram-negative pathogens. J. Hosp. Infect. 2014, 87, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, P. Testing standards for sporicides. J. Hosp. Infect. 2011, 77, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, M.; Lawson, S.; Otter, J. Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores. J. Microbiol. Methods 2005, 60, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Melly, E.; Cowan, A.; Setlow, P. Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J. Appl. Microbiol. 2002, 93, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.; Pottage, T.; Bennett, A.; Walker, J. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment. J. Hosp. Infect. 2011, 77, 199–203. [Google Scholar] [CrossRef]
- Shapey, S.; Machin, K.; Levi, K.; Boswell, T. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J. Hosp. Infect. 2008, 70, 136–141. [Google Scholar] [CrossRef]
- Barbut, F.; Yezli, S.; Otter, J. Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores. J. Hosp. Infect. 2012, 80, 85–87. [Google Scholar] [CrossRef]
- Rogers, J.V.; Sabourin, C.; Choi, Y.; Richter, W.; Rudnicki, D.; Riggs, K.; Taylor, M.; Chang, J. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. J. Appl. Microbiol. 2005, 99, 739–748. [Google Scholar] [CrossRef]
- Dussurget, O.; Stewart, G.R.; Neyrolles, O.; Pescher, P.; Young, D.; Marchal, G. Role of Mycobacterium tuberculosisCopper-Zinc Superoxide Dismutase. Infect. Immun. 2001, 69, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Rutala, W.A.; Cole, E.C.; Wannamaker, N.S.; Weber, D.J. Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am. J. Med. 1991, 91, 267–271. [Google Scholar] [CrossRef]
- Russell, A.D. Activity of biocides against mycobacteria. Soc. Appl. Bacteriol. 1996, 25, 87–101. [Google Scholar]
- Grare, M.; Dailloux, M.; Simon, L.; Dimajo, P.; Laurain, C. Efficacy of Dry Mist of Hydrogen Peroxide (DMHP) against Mycobacterium tuberculosis and use of DMHP for Routine Decontamination of Biosafety Level 3 Laboratories. J. Clin. Microbiol. 2008, 46, 2955–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, L.; Otter, J.A.; Chewins, J.; Wengenack, N.L. Use of Hydrogen Peroxide Vapor for Deactivation of Mycobacterium tuberculosis in a Biological Safety Cabinet and a Room. J. Clin. Microbiol. 2006, 45, 810–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karageorgopoulos, D.E.; Falagas, M.E. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect. Dis. 2008, 8, 751–762. [Google Scholar] [CrossRef]
- Alfandari, S.; Góis, J.; Delannoy, P.-Y.; Georges, H.; Boussekey, N.; Chiche, A.; Meybeck, A.; Patoz, P.; Blondiaux, N.; Senneville, E.; et al. Management and control of a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. Méd. Mal. Infect. 2014, 44, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Chmielarczyk, A.; Higgins, P.G.; Wójkowska-Mach, J.; Synowiec, E.; Zander, E.; Romaniszyn, D.; Gosiewski, T.; Seifert, H.; Heczko, P.; Bulanda, M. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J. Hosp. Infect. 2012, 81, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Piskin, N.; Celebi, G.; Kulah, C.; Mengeloglu, Z.; Yumusak, M. Activity of a dry mist-generated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am. J. Infect. Control 2011, 39, 757–762. [Google Scholar] [CrossRef]
- Boyce, J.M.; Potter-Bynoe, G.; Chenevert, C.; King, T. Environmental Contamination Due to Methicillin-Resistant Staphylococcus aureus: Possible Infection Control Implications. Infect. Control Hosp. Epidemiol. 1997, 18, 622–627. [Google Scholar] [CrossRef]
- Hardy, K.; Oppenheim, B.A.; Gossain, S.; Gao, F.; Hawkey, P.M. A Study of the Relationship Between Environmental Contamination with Methicillin-ResistantStaphylococcus aureus(MRSA) and Patients’ Acquisition of MRSA. Infect. Control Hosp. Epidemiol. 2006, 27, 127–132. [Google Scholar] [CrossRef]
- Jeanes, A.; Rao, G.; Osman, M.; Merrick, P. Eradication of persistent environmental MRSA. J. Hosp. Infect. 2005, 61, 85–86. [Google Scholar] [CrossRef]
- Ray, A.; Pérez, F.; Beltramini, A.M.; Jakubowycz, M.; Dimick, P.; Jacobs, M.R.; Roman, K.; Bonomo, R.A.; Salata, R.A. Use of vaporized hydrogen peroxide decontamination during an outbreak of multidrug-resistant Acinetobacter baumannii infection at a long-term acute care hospital. Infect. Control Hosp. Epidemiol. 2010, 31, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, S.; Fakih, M.G.; Riederer, K.; Shah, A.R.; Khatib, R. Interinstitutional and Intrainstitutional Transmission of a Strain ofAcinetobacter baumanniiDetected by Molecular Analysis Comparison of Pulsed-Field Gel Electrophoresis and Repetitive Sequence–Based Polymerase Chain Reaction. Infect. Control Hosp. Epidemiol. 2006, 27, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; De Pascale, G.; Manno, D.; Spanu, T.; Cambieri, A.; Antonelli, M.; Sanguinetti, M.; Fadda, G.; Cauda, R. Prediction models to identify hospitalized patients at risk of being colonized or infected with multidrug-resistant Acinetobacter baumannii calcoaceticus complex. J. Antimicrob. Chemother. 2008, 62, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.; Rohde, S.; Lundgren, B.; Westh, H. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide. J. Hosp. Infect. 2008, 70, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.G.; Digney, W.; Locket, P.; Dancer, S.J. Controlling methicillin-resistant Staphylococcus aureus (MRSA) in a hospital and the role of hydrogen peroxide decontamination: An interrupted time series analysis. BMJ Open 2014, 4, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: The case for hospital cleaning. Lancet Infect. Dis. 2008, 8, 101–113. [Google Scholar] [CrossRef]
- Otter, J.A.; French, G.L. Survival of nosocomial bacteria and spores o surfaces and inactivation by hydrogen peroxide vapor. J. Clin. Microbiol. 2009, 47, 205–207. [Google Scholar] [CrossRef] [Green Version]
- Lacey, S.; Want, S. An outbreak of Enterobacter cloacae associated with contamination of a blood gas machine. J. Infect. 1995, 30, 223–226. [Google Scholar] [CrossRef]
- Pittet, D.; Dharan, S.; Touveneau, S.; Sauvan, V.; Perneger, T.V. Bacterial contamination of the hands of hospital staff during routine patient care. Arch. Intern. Med. 1999, 159, 821–826. [Google Scholar] [CrossRef]
- Bates, C.; Pearse, R. Use of hydrogen peroxide vapour for environmental control during a Serratia outbreak in a neonatal intensive care unit. J. Hosp. Infect. 2005, 61, 364–366. [Google Scholar] [CrossRef]
- Blazejewski, C.; Wallet, F.; Rouzé, A.; Le Guern, R.; Ponthieux, S.; Salleron, J.; Nseir, S. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit. Care 2015, 19, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaughnessy, M.K.; Micielli, R.L.; DePestel, D.D.; Arndt, J.; Strachan, C.L.; Welch, K.B.; Chenoweth, C.E. Evaluation of Hospital Room Assignment and Acquisition of Clostridium difficile Infection. Infect. Control Hosp. Epidemiol. 2011, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Mccord, J.; Prewitt, M.; Dyakova, E.; Mookerjee, S.; Otter, J. Reduction in Clostridium difficile infection associated with the introduction of hydrogen peroxide vapour automated room disinfection. J. Hosp. Infect. 2016, 94, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Carling, P.C.; Perkins, J.; Ferguson, J.; Thomasser, A. Evaluating a New Paradigm for Comparing Surface Disinfection in Clinical Practice. Infect. Control Hosp. Epidemiol. 2014, 35, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Gergen, M.F.; Sickbert-Bennett, E.E.; Williams, D.A.; Weber, D.J. Effectiveness of improved hydrogen peroxide in decontaminating privacy curtains contaminated with multidrug-resistant pathogens. Am. J. Infect. Control 2014, 42, 426–428. [Google Scholar] [CrossRef]
HP or HPV Concentration | Exposure Time | Bacteria Reduction | Author and Year |
---|---|---|---|
3000 ppm + 30 ppb silver ions | 15 min–24 h | Escherichia coli (5 log10) Proteus mirabilis (6 log10) Klebsiella pneumoniae (6 log10) | Pedahzur, 1995—Davoudi, 2013 |
50,000 ppm + 0.1% silver ions | 5–30 min | Staphylococcus aureus ATCC 6538 (8 log10) Pseudomonas aeruginosa ATCC 15442 (8 log10) | De Giglio, 2008 |
500–600 ppm | 2–3 h | Acinetobacter baumannii (>5 log10) MR Staphylococcus aureus (>4 log10) MDR Enterococcus faecalis (>4 log10) Clostridium difficile (>2 log10) | Lemmen 2015 |
Glosair™ 400 (hydrogen peroxide with silver ions) | 35 min | Pseudomonas spp. (>3 log10) Enterococcus spp. (>3 log10) Staphylococcus aureus (>4 log10) Acinetobacter baumannii (>1 log10) MDR Klebsiella pneumoniae—Enterobacter—Proteus spp. (>1 log10) | Herruzo 2014 |
300,000 ppm | 15 min 30 min | Clostridium difficile (6 log10) Mycobacterium tuberculosis (3 log10) | Shapey, 2008—Davies, 2011 Hall, 2007 |
350,000 ppm | 30 min 100 min | MR Staphylococcus aureus (6 log10) Biofilm (A. baumannii, E. faecalis, K. pneumoniae, P. aeruginosa, S. aureus) (6 log10) | Murdoch 2016 Watson 2018 |
HPV Concentration | Exposure Time | Contamination Reduction | Author and Year |
---|---|---|---|
240 ppm | 8 h | MDR Acinetobacter baumannii (from 7% to 0%) | Ray, 2000 Saed, 2006 |
50,000–60,000 ppm | 3–4 h 24 h | MR Staphylococcus aureus (from 25% to 19%) Clostridium difficile (from 19% to 0.2%) | Dancer, 2008 Mitchell, 2014 Barbout, 2009–2012 Shaughnessy, 2011 |
300,000 ppm | 1 h 12 h | MR Staphylococcus aureus (from 100 to 40 CFU/cm2) MDR Acinetobacter baumannii—Enterobacter cloacae (from 48% to 2%) | Bartels, 2008 Blazejewski, 2015 Lacey, 1995 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totaro, M.; Casini, B.; Profeti, S.; Tuvo, B.; Privitera, G.; Baggiani, A. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens 2020, 9, 408. https://doi.org/10.3390/pathogens9050408
Totaro M, Casini B, Profeti S, Tuvo B, Privitera G, Baggiani A. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens. 2020; 9(5):408. https://doi.org/10.3390/pathogens9050408
Chicago/Turabian StyleTotaro, Michele, Beatrice Casini, Sara Profeti, Benedetta Tuvo, Gaetano Privitera, and Angelo Baggiani. 2020. "Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria" Pathogens 9, no. 5: 408. https://doi.org/10.3390/pathogens9050408
APA StyleTotaro, M., Casini, B., Profeti, S., Tuvo, B., Privitera, G., & Baggiani, A. (2020). Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens, 9(5), 408. https://doi.org/10.3390/pathogens9050408