Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacillus anthracis Ames Spores and Aerosol Challenges
2.2. Telemetry Analysis
2.3. Necropsy and Histopathology
2.4. Hematology and C-Reactive Protein
2.5. Bacteremia Analysis
2.6. Toxemia Analysis
2.7. Serology Analysis
2.8. Statistical Analysis
3. Results
3.1. Mortality
3.2. Necropsy and Histopathology
3.3. Physiological Responses
3.3.1. Telemetry
3.3.2. Hematology and C-Reactive Protein
3.3.3. Bacteremia
3.3.4. Toxemia
3.3.5. Serology
4. Discussion
5. Acknowledgements
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Barnewall, R.E.; Comer, J.E.; Miller, B.D.; Gutting, B.W.; Wolfe, D.N.; Director-Myska, A.E.; Nichols, T.L.; Taft, S.C. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model. Front. Cell. Infect. Microbiol. 2012, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Inglesby, T.V.; O’Toole, T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Friedlander, A.M.; Gerberding, J.; Hauer, J.; Hughes, J.; et al. Anthrax as a Biological Weapon, 2002. Updated recommendations for management. JAMA 2002, 287, 2236–2252. [Google Scholar] [CrossRef] [PubMed]
- Taft, S.C.; Nichols, T.L.; Hines, S.A.; Barnewall, R.E.; Stark, G.V.; Comer, J.E. Physiological Responses to a Single Low-Dose of Bacillus anthracis Spores in the Rabbit Model of Inhalational Anthrax. Pathogens 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Taft, S.C.; Hines, S.A. Benchmark Dose Analysis for Bacillus anthracis Inhalation Exposures in the Nonhuman Primate. Risk Anal. 2012, 32, 1750–1768. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Review of Bacillus anthracis Dose-Response Data for Human Health Risk Assessment; National Homeland Security Center Threat and Consequence Assessment Division: Cincinnati, OH, USA, 2016.
- Albrink, W.S.; Goodlow, R.J. Experimental Inhalation Anthrax in the Chimpanzee. Am. J. Pathol. 1959, 35, 1055–1065. [Google Scholar]
- Brachman, P.S.; Kaufman, A.F.; Dalldorf, F.G. Industrial inhalation Anthrax. Bacteriol. Rev. 1966, 30, 646–659. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Technical Brief: Review of Bacillus anthracis (Anthrax) Studies for Dose-Response Modeling to Estimate Risk; Office of Research and Development National Homeland Security Research Center, Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- U.S. Environmental Protection Agency. Multiple Daily Low-Dose Bacillus anthracis Ames Inhalation Exposures in the Rabbit; Office of Research and Development National Homeland Security Research Center, Ed.; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2012.
- Gutting, B.W.; Rukhin, A.; Marchette, D.; Mackie, R.S.; Thran, B. Dose-Response Modeling for Inhalational Anthrax in Rabbits Following Single or Multiple Exposures. Risk Anal. 2016, 36, 2031–2038. [Google Scholar] [CrossRef]
- Coleman, M.E.; Marks, H.M.; Bartrand, T.A.; Donahue, D.W.; Hines, S.A.; Comer, J.E.; Taft, S.C. Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores. Risk Anal. 2017, 37, 943–957. [Google Scholar] [CrossRef]
- National Research Council. Guide to the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Dauphin, L.A.; Newton, B.R.; Rasmussen, M.V.; Meyer, R.F.; Bowen, M.D. Gamma Irradiation Can Be Used to Inactivate Bacillus anthracis Spores without Compromising the Sensitivity of Diagnostic Assays. Appl. Environ. Microbiol. 2008, 74, 4427–4433. [Google Scholar] [CrossRef][Green Version]
- Comer, J.E.; Ray, B.D.; Henning, L.N.; Stark, G.V.; Barnewall, R.E.; Mott, J.M.; Meister, G.T. Characterization of a Therapeutic Model of Inhalational Anthrax Using an Increase in Body Temperature in New Zealand White Rabbits as a Trigger for Treatment. Clin. Vaccine Immunol. 2012, 19, 1517–1525. [Google Scholar] [CrossRef]
- Ionin, B.; Hopkins, R.J.; Pleune, B.; Sivko, G.S.; Reid, F.M.; Clement, K.H.; Rudge, T.L.; Stark, G.V.; Innes, A.; Sari, S.; et al. Evaluation of Immunogenicity and Efficacy of Anthrax Vaccine Adsorbed for Postexposure Prophylaxis. Clin. Vaccine Immunol. 2013, 20, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Zaucha, G.M.; Pitt, L.M.; Estep, J.; Ivins, B.; Friedlander, A.M. The pathology of experimental anthrax in rabbits exposed by inhalation and subcutaneous inoculation. Arch. Pathol. Lab. Med. 1998, 122, 982–992. [Google Scholar] [PubMed]
- Murty, D.; Rajesh, E.; Raghava, D.; Raghavan, T.V.; Surulivel, M.K.M. Hypolipidemic effect of arborium plus in experimentally induced hypercholestermic rabbits. Yakugaku Zasshi 2010, 130, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Setorki, M.; Asgary, S.; Eidi, A.; Rohani, A.H.; Esmaeil, N. Effects of apple juice on risk factors of lipid profile, inflammation and coagulation, endothelial markers and atherosclerotic lesions in high cholesterolemic rabbits. Lipids Health Dis. 2009, 8, 39. [Google Scholar] [CrossRef]
- Arora, G.; Misra, R.; Sajid, A. Model Systems for Pulmonary Infectious Diseases: Paradigms of Anthrax and Tuberculosis. Curr. Top. Med. Chem. 2017, 17, 2077–2099. [Google Scholar] [CrossRef]
- Henning, L.N.; Carpenter, S.; Stark, G.V.; Serbina, N.V. Development of Protective Immunity in New Zealand White Rabbits Challenged with Bacillus anthracis Spores and Treated with Antibiotics and Obiltoxaximab, a Monoclonal Antibody against Protective Antigen. Antimicrob. Agents Chemother. 2018, 62, e01590-17. [Google Scholar] [CrossRef]
- Lawrence, W.S.; Peel, J.E.; Sivasubramani, S.K.; Baze, W.B.; Whorton, E.B.; Beasley, D.W.; Comer, J.E.; Hughes, D.E.; Ling, L.L.; Peterson, J.W. Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model. Pathogens 2020, 9, 773. [Google Scholar] [CrossRef]
- Mabry, R.; Brasky, K.; Geiger, R.; Carrion, R., Jr.; Hubbard, G.B.; Leppla, S.; Patterson, J.L.; Georgiou, G.; Iverson, B.L. Detection of Anthrax Toxin in the Serum of Animals Infected with Bacillus anthracis by Using Engineered Immunoassays. Clin. Vaccine Immunol. 2006, 13, 671–677. [Google Scholar] [CrossRef]
- Kobiler, D.; Weiss, S.; Levy, H.; Fisher, M.; Mechaly, A.; Pass, A.; Altboum, Z. Protective Antigen as a Correlative Marker for Anthrax in Animal Models. Infect. Immun. 2006, 74, 5871–5876. [Google Scholar] [CrossRef]
- Yee, S.B.; Hatkin, J.M.; Dyer, D.N.; Orr, S.; Pitt, M.L.M. Aerosolized Bacillus anthracis Infection in New Zealand White Rabbits: Natural History and Intravenous Levofloxacin Treatment. Comp. Med. 2010, 60, 461–468. [Google Scholar]
- Boyer, A.E.; Quinn, C.P.; Hoffmaster, A.R.; Kozel, T.R.; Saile, E.; Marston, C.K.; Percival, A.; Plikaytis, B.D.; Woolfitt, A.R.; Gallegos, M.; et al. Kinetics of Lethal Factor and Poly-d-Glutamic Acid Antigenemia during Inhalation Anthrax in Rhesus Macaques. Infect. Immun. 2009, 77, 3432–3441. [Google Scholar] [CrossRef] [PubMed]
- Brachman, P.S. Inhalation anthrax. Ann. N. Y. Acad. Sci. 1980, 353, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Solano, M.I.; Woolfitt, A.R.; Boyer, A.E.; Lins, R.C.; Isbell, K.; Gallegos-Candela, M.; Moura, H.; Pierce, C.L.; Barr, J.R. Accurate and selective quantification of anthrax protective antigen in plasma by immunocapture and isotope dilution mass spectrometry. Analyst 2019, 144, 2264–2274. [Google Scholar] [CrossRef]
- Henning, L.N.; Comer, J.E.; Stark, G.V.; Ray, B.D.; Tordoff, K.P.; Knostman, K.A.B.; Meister, G.T. Development of an Inhalational Bacillus anthracis Exposure Therapeutic Model in Cynomolgus Macaques. Clin. Vaccine Immunol. 2012, 19, 1765–1775. [Google Scholar] [CrossRef]
- Saile, E.; Boons, G.-J.; Buskas, T.; Carlson, R.W.; Kannenberg, E.L.; Barr, J.R.; Boyer, A.E.; Gallegos-Candela, M.; Quinn, C.P. Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques. Clin. Vaccine Immunol. 2011, 18, 743–748. [Google Scholar] [CrossRef]
Group Mean Daily Inhaled Dose, in 1.0 × 103 CFU (Standard Deviation) a and Particle Size (GSD) b | Rabbit ID Number | Individual Mean Daily Inhaled Dose | Number of Doses | Accumulated Dose (CFU) c | Outcome, Survived or Died (Days from First Challenge Day to Death) | |
---|---|---|---|---|---|---|
Mean | Standard Deviation | |||||
Irradiated Spores 0.81 µm (1.53) | 40 | 0 | 0 | 15 | 0 | Survived |
7 | 0 | 0 | 15 | 0 | Survived | |
5 | 0 | 0 | 15 | 0 | Survived | |
9 | 0 | 0 | 15 | 0 | Survived | |
37 | 0 | 0 | 15 | 0 | Survived | |
0.291 (0.388) 0.79 µm (1.52) | 13 | 3.85 × 102 | 7.57 × 102 | 15 | 5.78 × 103 | Survived |
34 | 3.17 × 102 | 4.48 × 102 | 15 | 4.76 × 103 | Survived | |
25 | 2.79 × 102 | 3.54 × 102 | 15 | 4.19 × 103 | Survived | |
15 | 3.17 × 102 | 3.27 × 102 | 15 | 4.76 × 103 | Survived | |
30 | 2.72 × 102 | 2.33 × 102 | 15 | 4.07 × 103 | Survived | |
28 | 2.34 × 102 | 1.49 × 102 | 15 | 3.51 × 103 | Survived | |
19 | 2.32 × 102 | 1.28 × 102 | 15 | 3.48 × 103 | Survived | |
1.22 (0.559) 0.82 µm (1.53) | 14 | 7.38 × 102 | 2.99 × 102 | 15 | 1.11 × 104 | Survived |
11 | 1.12 × 103 | 5.01 × 102 | 15 | 1.68 × 104 | Survived | |
2 | 1.33 × 103 | 5.95 × 102 | 14 | 1.86 × 104 | Died (17.9) | |
8 | 1.41 × 103 | 6.06 × 102 | 15 | 2.12 × 104 | Survived | |
12 | 1.30 × 103 | 4.90 × 102 | 15 | 1.96 × 104 | Survived | |
18 | 1.21 × 103 | 5.47 × 102 | 15 | 1.82 × 104 | Survived | |
32 | 1.44 × 103 | 5.92 × 102 | 15 | 2.16 × 104 | Survived | |
11.7 (4.64) 0.86 µm (1.49) | 6 | 6.41 × 103 | 2.57 × 103 | 9 | 5.77 × 104 | Died (10.9) |
33 | 9.75 × 103 | 2.58 × 103 | 10 | 9.75 × 104 | Died (12.7) | |
27 | 1.06 × 104 | 3.51 × 103 | 14 | 1.59 × 105 | Died (20.8) | |
31 | 1.25 × 104 | 3.27 × 103 | 11 | 1.37 × 105 | Died (14.8) | |
39 | 1.44 × 104 | 5.99 × 103 | 15 | 2.16 × 105 | Survived | |
21 | 1.32 × 104 | 4.97 × 103 | 15 | 1.98 × 105 | Survived | |
38 | 1.27 × 104 | 3.77 × 103 | 15 | 1.91 × 105 | Survived |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taft, S.C.; Nichols, T.L.; Hines, S.A.; Barnewall, R.E.; Stark, G.V.; Comer, J.E. Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens 2020, 9, 877. https://doi.org/10.3390/pathogens9110877
Taft SC, Nichols TL, Hines SA, Barnewall RE, Stark GV, Comer JE. Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens. 2020; 9(11):877. https://doi.org/10.3390/pathogens9110877
Chicago/Turabian StyleTaft, Sarah C., Tonya L. Nichols, Stephanie A. Hines, Roy E. Barnewall, Gregory V. Stark, and Jason E. Comer. 2020. "Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax" Pathogens 9, no. 11: 877. https://doi.org/10.3390/pathogens9110877
APA StyleTaft, S. C., Nichols, T. L., Hines, S. A., Barnewall, R. E., Stark, G. V., & Comer, J. E. (2020). Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens, 9(11), 877. https://doi.org/10.3390/pathogens9110877