First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain
Abstract
:1. Introduction
2. Results
2.1. Case Presentation
2.2. Strain Characterization
2.3. Genomic Comparison
2.3.1. Phylogenomic Analysis
2.3.2. Investigation of Factors Associated with Virulence
2.3.3. Pan-Genome Investigation
3. Discussion
4. Materials and Methods
4.1. Case Presentation
4.2. Detection of Lm
4.3. DNA Extraction and Whole Genome Sequencing
4.4. Phylogenomic Reconstruction of the CC121 Strain Population Structure
4.5. Identification of Virulence Factors and Genome Wide Association Study
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piveteau, P.; Depret, G.; Pivato, B.; Garmyn, D.; Hartmann, A. Changes in Gene Expression during Adaptation of Listeria monocytogenes to the Soil Environment. PLoS ONE 2011, 6, e24881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivant, A.L.; Garmyn, D.; Piveteau, P. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell. Infect. Microbiol. 2013, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, A.; Cancellotti, F.M.; Turilli, C.; Randi, E. Serological investigations for some bacterial and viral pathogens in fallow deer (Cervus dama) and wild boar (Sus scrofa) of the San Rossore Preserve, Tuscany, Italy. J. Wildl. Dis. 1988, 24, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Hydeskov, H.B.; Amar, C.F.L.; Fernandez, J.R.; John, S.K.; Macgregor, S.K.; Cunningham, A.A.; Lawson, B. Listeria Monocytogenes Infection of Free-Living Western European Hedgehogs (Erinaceus Europaeus). J. Zoo Wildl. Med. 2019, 50, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Iida, T.; Tanikawa, T.; Maruyama, T.; Morita, C. Isolation of Listeria monocytogenes from roof rats (Rattus rattus) in buildings in Tokyo. J. Vet. Med. Sci. 1991, 53, 521–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, S.; Tanikawa, T.; Kawaguchi, J.; Iida, T.; Morita, C. Prevalence of Listeria (spp.) in wild rats captured in the Kanto area of Japan. J. Vet. Med. Sci. 1992, 54, 461–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyautey, E.; Lapen, D.R.; Wilkes, G.; McCleary, K.; Pagotto, F.; Tyler, K.; Hartmann, A.; Piveteau, P.; Rieu, A.; Robertson, W.J.; et al. Distribution and Characteristics of Listeria monocytogenes Isolates from Surface Waters of the South Nation River Watershed, Ontario, Canada. Appl. Environ. Microbiol. 2007, 73, 5401–5410. [Google Scholar] [CrossRef] [Green Version]
- Parsons, C.; Niedermeyer, J.; Gould, N.; Brown, P.; Strules, J.; Parsons, A.W.; Bernardo Mesa-Cruz, J.; Kelly, M.J.; Hooker, M.J.; Chamberlain, M.J.; et al. Listeria monocytogenes at the human–wildlife interface: Black bears (Ursus americanus) as potential vehicles for Listeria. Microb. Biotechnol. 2019, 13, 706–721. [Google Scholar] [CrossRef] [Green Version]
- Weindl, L.; Frank, E.; Ullrich, U.; Heurich, M.; Kleta, S.; Ellerbroek, L.; Gareis, M. Listeria monocytogenes in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathog. Dis. 2016, 13, 391–397. [Google Scholar] [CrossRef]
- Yoshida, T.; Sugimoto, T.; Sato, M.; Hirai, K. Incidence of Listeria monocytogenes in wild animals in Japan. J. Vet. Med. Sci. 2000, 62, 673–675. [Google Scholar] [CrossRef] [Green Version]
- Grattarola, C.; Giorda, F.; Iulini, B.; Pintore, M.D.; Pautasso, A.; Zoppi, S.; Goria, M.; Romano, A.; Peletto, S.; Varello, K.; et al. Meningoencephalitis and Listeria monocytogenes, Toxoplasma gondii and Brucella spp. coinfection in a dolphin in Italy. Dis. Aquat. Org. 2016, 118, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Ragon, M.; Wirth, T.; Hollandt, F.; Lavenir, R.; Lecuit, M.; Le Monnier, A.; Brisse, S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008, 4, e1000146. [Google Scholar] [CrossRef] [Green Version]
- Chenal-Francisque, V.; Lopez, J.; Cantinelli, T.; Caro, V.; Tran, C.; Leclercq, A.; Lecuit, M.; Brisse, S. Worldwide distribution of major clones of Listeria monocytogenes. Emerg. Infect. Dis. 2011, 17, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Cantinelli, T.; Chenal-Francisque, V.; Diancourt, L.; Frezal, L.; Leclercq, A.; Wirth, T.; Lecuit, M.; Brisse, S. "Epidemic clones" of Listeria monocytogenes are widespread and ancient clonal groups. J. Clin. Microbiol. 2013, 51, 3770–3779. [Google Scholar] [CrossRef] [Green Version]
- Haase, J.K.; Didelot, X.; Lecuit, M.; Korkeala, H.; Achtman, M. The ubiquitous nature of Listeria monocytogenes clones: A large-scale Multilocus Sequence Typing study. Environ. Microbiol. 2014, 16, 405–416. [Google Scholar] [CrossRef]
- Painset, A.; Björkman, J.T.; Kiil, K.; Guillier, L.; Mariet, J.-F.; Félix, B.; Amar, C.; Rotariu, O.; Roussel, S.; Perez-Reche, F.; et al. LiSEQ—Whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genom. 2019. [Google Scholar] [CrossRef]
- Henri, C.; Felix, B.; Guillier, L.; Leekitcharoenphon, P.; Michelon, D.; Mariet, J.F.; Aarestrup, F.M.; Mistou, M.Y.; Hendriksen, R.S.; Roussel, S. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Appl. Environ. Microbiol. 2016, 82, 5720–5728. [Google Scholar] [CrossRef] [Green Version]
- Felix, B.; Feurer, C.; Maillet, A.; Guillier, L.; Boscher, E.; Kerouanton, A.; Denis, M.; Roussel, S. Population Genetic Structure of Listeria monocytogenes Strains Isolated From the Pig and Pork Production Chain in France. Front. Microbiol. 2018, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Holch, A.; Webb, K.; Lukjancenko, O.; Ussery, D.; Rosenthal, B.M.; Gram, L. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl. Environ. Microbiol. 2013, 79, 2944–2951. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.; Lopez, V.; Martinez-Suarez, J.V. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol. 2014, 39, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Rychli, K.; Wagner, E.M.; Ciolacu, L.; Zaiser, A.; Tasara, T.; Wagner, M.; Schmitz-Esser, S. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLoS ONE 2017, 12, e0176857. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, F.; Palma, F.; Guillier, L.; Lucchi, A.; De Cesare, A.; Manfreda, G. Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated Within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology. Front. Microbiol. 2018, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Stoller, A.; Stevens, M.J.A.; Stephan, R.; Guldimann, C. Characteristics of Listeria monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period. Pathogens 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Palma, F.; Brauge, T.; Radomski, N.; Mallet, L.; Felten, A.; Mistou, M.-Y.; Brisabois, A.; Guillier, L.; Midelet-Bourdin, G. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genom. 2020, 21, 130. [Google Scholar] [CrossRef]
- Dreyer, M.; Aguilar-Bultet, L.; Rupp, S.; Guldimann, C.; Stephan, R.; Schock, A.; Otter, A.; Schupbach, G.; Brisse, S.; Lecuit, M.; et al. Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci. Rep. 2016, 6, 36419. [Google Scholar] [CrossRef] [Green Version]
- Félix, B.; Sevellec, Y.; Palma, F.; Felten, A.; Radomski, N.; Mallet, L.; Blanchard, Y.; Leroux, A.; Soumet, C.; Bridier, A.; et al. A European-wide dataset to decipher adaptation mechanisms of Listeria monocytogenes to diverse ecological niches (unpublished, in revision). In Scientific Data; Nature Publishing Group: London, UK, 2020. [Google Scholar]
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [Green Version]
- Papić, B.; Pate, M.; Félix, B.; Kušar, D. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol. 2019, 19, 299. [Google Scholar] [CrossRef] [Green Version]
- Steckler, A.J.; Cardenas-Alvarez, M.X.; Townsend Ramsett, M.K.; Dyer, N.; Bergholz, T.M. Genetic characterization of Listeria monocytogenes from ruminant listeriosis from different geographical regions in the U.S. Vet. Microbiol. 2018, 215, 93–97. [Google Scholar] [CrossRef]
- Althaus, D.; Lehner, A.; Brisse, S.; Maury, M.; Tasara, T.; Stephan, R. Characterization of Listeria monocytogenes strains isolated during 2011-2013 from human infections in Switzerland. Foodborne Pathog. Dis. 2014, 11, 753–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, J.C.; Mercoulia, K.; Tomita, T.; Easton, M.; Li, H.Y.; Bulach, D.M.; Stinear, T.P.; Seemann, T.; Howden, B.P. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes. J. Clin. Microbiol. 2016, 54, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychli, K.; Stessl, B.; Szakmary-Brändle, K.; Strauß, A.; Wagner, M.; Schoder, D. Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants. Genes 2018, 9, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellstrom, S.; Kiviniemi, K.; Autio, T.; Korkeala, H. Listeria monocytogenes is common in wild birds in Helsinki region and genotypes are frequently similar with those found along the food chain. J. Appl. Microbiol. 2008, 104, 883–888. [Google Scholar] [CrossRef]
- Gismervik, K.; Aspholm, M.; Rorvik, L.M.; Bruheim, T.; Andersen, A.; Skaar, I. Invading slugs (Arion vulgaris) can be vectors for Listeria monocytogenes. J. Appl. Microbiol. 2015, 118, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Naditz, A.L.; Dzieciol, M.; Wagner, M.; Schmitz-Esser, S. Plasmids contribute to food processing environment–associated stress survival in three Listeria monocytogenes ST121, ST8, and ST5 strains. Int. J. Food Microbiol. 2019, 299, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Rychli, K.; Muhterem-Uyar, M.; Zaiser, A.; Stessl, B.; Guinane, C.M.; Cotter, P.D.; Wagner, M.; Schmitz-Esser, S. Tn6188—A novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS ONE 2013, 8, e76835. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Rychli, K.; Zaiser, A.; Wieser, C.; Wagner, M.; Schmitz-Esser, S. The Listeria monocytogenes transposon Tn6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide. FEMS Microbiol. Lett. 2014, 361, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.; López-Alonso, V.; Rodríguez, P.; Martínez-Suárez, J.V. The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis. Appl. Environ. Microbiol. 2016, 82, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Schmitz-Esser, S.; Muller, A.; Stessl, B.; Wagner, M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front. Microbiol. 2015, 6, 380. [Google Scholar] [CrossRef] [Green Version]
- Harter, E.; Wagner, E.M.; Zaiser, A.; Halecker, S.; Wagner, M.; Rychli, K. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dortet, L.; Mostowy, S.; Samba-Louaka, A.; Gouin, E.; Nahori, M.A.; Wiemer, E.A.; Dussurget, O.; Cossart, P. Recruitment of the major vault protein by InlK: A Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 2011, 7, e1002168. [Google Scholar] [CrossRef]
- Pilgrim, S.; Kolb-Maurer, A.; Gentschev, I.; Goebel, W.; Kuhn, M. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect. Immun. 2003, 71, 3473–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 1995, 32, 331–340. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Marsili, L.; Maltese, S.; Spinsanti, G.; Casini, S.; Caliani, I.; Gaspari, S.; Muñoz-Arnanz, J.; Jimenez, B.; et al. The Pelagos Sanctuary for Mediterranean marine mammals: Marine Protected Area (MPA) or marine polluted area? The case study of the striped dolphin (Stenella coeruleoalba). Mar. Pollut. Bull. 2013, 70, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Jepson, P.D.; Deaville, R.; Barber, J.L.; Aguilar, À.; Borrell, A.; Murphy, S.; Barry, J.; Brownlow, A.; Barnett, J.; Berrow, S.; et al. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep. 2016, 6, 18573. [Google Scholar] [CrossRef] [Green Version]
- Paillard, D.; Dubois, V.; Thiebaut, R.; Nathier, F.; Hoogland, E.; Caumette, P.; Quentin, C. Occurrence of Listeria spp. in effluents of French urban wastewater treatment plants. Appl. Environ. Microbiol. 2005, 71, 7562–7566. [Google Scholar] [CrossRef] [Green Version]
- Jepson, P.D.; Bennett, P.M.; Deaville, R.; Allchin, C.R.; Baker, J.R.; Law, R.J. Relationships between polychlorinated biphenyls and health status in harbor porpoises (Phocoena phocoena) stranded in the United Kingdom. Environ. Toxicol. Chem. 2005, 24, 238–248. [Google Scholar] [CrossRef]
- Kannan, K.; Blankenship, A.L.; Jones, P.D.; Giesy, J.P. Toxicity Reference Values for the Toxic Effects of Polychlorinated Biphenyls to Aquatic Mammals. Hum. Ecol. Risk Assess. 2000, 6, 181–201. [Google Scholar] [CrossRef]
- Marsili, L.; D’Agostino, A.; Bucalossi, D.; Malatesta, T.; Fossi, M.C. Theoretical models to evaluate hazard due to organochlorine compounds (OCs) in Mediterranean striped dolphin (Stenella coeruleoalba). Chemosphere 2004, 56, 791–801. [Google Scholar] [CrossRef]
- Palma, F.; Pasquali, F.; Lucchi, A.; De Cesare, A.; Manfreda, G. Whole genome sequencing for typing and characterisation of Listeria monocytogenes isolated in a rabbit meat processing plant. Ital. J. Food Saf. 2017, 6, 6879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beleneva, I.A. Incidence and characteristics of Staphylococcus aureus and Listeria monocytogenes from the Japan and South China seas. Mar. Pollut. Bull. 2011, 62, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Bou-m’handi, N.; Jacquet, C.; El Marrakchi, A.; Martin, P. Phenotypic and molecular characterization of Listeria monocytogenes strains isolated from a marine environment in Morocco. Foodborne Pathog. Dis. 2007, 4, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Zaytseva, E.; Ermolaeva, S.; Somov, G.P. Low genetic diversity and epidemiological significance of Listeria monocytogenes isolated from wild animals in the far east of Russia. Infect. Genet. Evolut. 2007, 7, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Bremer, P.J.; Osborne, C.M.; Kemp, R.A.; Smith, J.J. Survival of Listeria monocytogenes in sea water and effect of exposure on thermal resistance. J. Appl. Microbiol. 1998, 85, 545–553. [Google Scholar] [CrossRef]
- Jami, M.; Ghanbari, M.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Listeria monocytogenes in Aquatic Food Products—A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 798–813. [Google Scholar] [CrossRef]
- Hutchison, M.; Thomas, D.; Strachan, N.; Goodburn, K.; Rotariu, O. A review of the published literature and current production and processing practices in smoked fish processing plants with emphasis on contamination by Listeria monocytogenes. Final FSA Rep. 2012. Available online: https://www.food.gov.uk/sites/default/files/media/document/775-1-1323_FS425012.pdf (accessed on 22 September 2020).
- Bergamasco, A.; Malanotte-Rizzoli, P. The circulation of the Mediterranean Sea: A historical review of experimental investigations. Adv. Oceanogr. Limnol. 2010, 1, 11–28. [Google Scholar] [CrossRef]
- OIE. Chapter 2.9.7 Listeria monocytogenes. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2019; OIE: Paris, France, 2018; ISBN 978-92-95108-18-9. [Google Scholar]
- Fritsch, L.; Felten, A.; Palma, F.; Mariet, J.-F.; Radomski, N.; Mistou, M.-Y.; Augustin, J.-C.; Guillier, L. Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to Listeria monocytogenes’ ability to grow in cold conditions. Int. J. Food Microbiol. 2019, 291, 181–188. [Google Scholar] [CrossRef]
- Fugett, E.B.; Schoonmaker-Bopp, D.; Dumas, N.B.; Corby, J.; Wiedmann, M. Pulsed-field gel electrophoresis (PFGE) analysis of temporally matched Listeria monocytogenes isolates from human clinical cases, foods, ruminant farms, and urban and natural environments reveals source-associated as well as widely distributed PFGE types. J. Clin. Microbiol. 2007, 45, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Pirone-Davies, C.; Chen, Y.; Pightling, A.; Ryan, G.; Wang, Y.; Yao, K.; Hoffmann, M.; Allard, M.W. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genom. 2018, 19, 708. [Google Scholar] [CrossRef]
- Vila Nova, M.; Durimel, K.; La, K.; Felten, A.; Bessières, P.; Mistou, M.-Y.; Mariadassou, M.; Radomski, N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genom. 2019, 20, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, A.J.; Koziol, A.G.; Manninger, P.A.; Blais, B.; Carrillo, C.D. ConFindr: Rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ 2019, 7, e6995. [Google Scholar] [CrossRef]
- Felten, A.; Vila Nova, M.; Durimel, K.; Guillier, L.; Mistou, M.-Y.; Radomski, N. First gene-ontology enrichment analysis based on bacterial coregenome variants: Insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiol. 2017, 17, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H.A.; Minh, B.Q.; von Haeseler, A.; Nguyen, L.-T. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Kimura, M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didelot, X.; Wilson, D.J. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes. PLoS Comput. Biol. 2015, 11, e1004041. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Connor, T.; Sirén, J.; Aanensen, D.; Corander, J. Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software. Mol. Biol. Evol. 2013, 30, 1224–1228. [Google Scholar] [CrossRef]
- Tonkin-Hill, G.; Lees, J.; Bentley, S.; Frost, S.; Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 2018, 3, 93. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2018, 47, D687–D692. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline. BioRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Coverage | Coverage_Map | Gaps | n Consensus | %Identity | %Coverage | Accession | Product |
---|---|---|---|---|---|---|---|---|
inlJ | 1-1934/2556 | ========/===... | #NA | 319 | 95.56 | 75.55 | NP_466343 | (inlJ) internalin J |
inlJ | 1589-2556/2556 | .........====== | #NA | 286 | 90.39 | 37.87 | NP_466343 | (inlJ) internalin J |
prfA | 1-714/714 | =============== | 0/0 | 377 | 99.86 | 100.00 | NP_463731 | (prfA) listeriolysin positive regulatory protein |
plcA | 1-954/954 | =============== | 0/0 | 377 | 98.64 | 100.00 | NP_463732 | (plcA) phosphatidylinositol-specific phospholipase c |
hly | 1-1590/1590 | =============== | 0/0 | 371 | 99.69 | 100.00 | NP_463733 | (hly) listeriolysin O precursor |
mpl | 1-1533/1533 | =============== | 0/0 | 374 | 99.61 | 100.00 | NP_463734 | (mpl) Zinc metalloproteinase precursor |
actA | 1-923/1920 | ========....... | 0/0 | 376 | 97.94 | 48.07 | NP_463735 | (actA) actin-assembly inducing protein precursor |
actA | 895-1920/1920 | ......========= | 0/0 | 374 | 96.78 | 53.44 | NP_463735 | (actA) actin-assembly inducing protein precursor |
plcB | 1-870/870 | =============== | 0/0 | 374 | 99.54 | 100.00 | NP_463736 | (plcB) phospholipase C |
clpC | 1-2463/2463 | =============== | 0/0 | 358 | 99.80 | 100.00 | NP_463763 | (clpC) endopeptidase Clp ATP-binding chain C |
vip | 1-1200/1200 | =============== | 0/0 | 373 | 99.42 | 100.00 | NP_463850 | (vip) surface adhesin Vip |
pdgA | 1-1401/1401 | =============== | 0/0 | 375 | 99.93 | 100.00 | NP_463944 | (pdgA) Peptidoglycan N-deacetylase |
inlA | 1-2403/2403 | =============== | 0/0 | 360 | 97.79 | 100.00 | NP_463962 | (inlA) Internalin A |
inlB | 1-1893/1893 | =============== | 0/0 | 367 | 99.10 | 100.00 | NP_463963 | (inlB) Internalin B |
iap/cwhA | 1-1449/1449 | ========/====== | 1/18 | 374 | 97.45 | 98.76 | NP_464110 | (iap/cwhA) P60 extracellular protein invasion associated protein Iap |
hpt | 1-1386/1386 | =============== | 0/0 | 366 | 97.91 | 100.00 | NP_464364 | (hpt) hexose phosphate transport protein |
lplA1 | 1-996/996 | =============== | 0/0 | 370 | 98.49 | 100.00 | NP_464456 | (lplA1) lipoate protein ligase |
clpE | 1-2175/2175 | =============== | 0/0 | 361 | 99.86 | 100.00 | NP_464522 | (clpE) ATP-dependent protease |
aut | 1-1719/1719 | =============== | 0/0 | 360 | 99.83 | 100.00 | NP_464601 | (aut) autolysin |
ami | 1-2754/2754 | =============== | 0/0 | 292 | 99.53 | 100.00 | NP_466081 | (ami) autolysin amidase adhesin |
gtcA | 1-438/438 | =============== | 0/0 | 375 | 100 | 100.00 | NP_466072 | (gtcA) wall teichoic acid glycosylation protein GtcA |
clpP | 1-597/597 | =============== | 0/0 | 358 | 100 | 100.00 | NP_465991 | (clpP) ATP-dependent Clp protease proteolytic subunit |
inlK | 1-1797/1797 | ========/====== | 1/6 | 322 | 98.50 | 100.00 | NP_464815 | (inlK) internalin K |
oatA | 1-1869/1869 | =============== | 0/0 | 367 | 99.62 | 100.00 | NP_464816 | (oatA) peptidoglycan O-acetyltransferase |
lap | 1-2601/2601 | =============== | 0/0 | 324 | 99.92 | 100.00 | NP_465159 | (lap) Listeria adhesion protein Lap |
lapB | 1-5136/5136 | =============== | 0/0 | 329 | 99.10 | 100.00 | NP_465191 | (lapB) Listeria adhesion protein LapB |
inlC | 1-891/891 | =============== | 0/0 | 362 | 99.89 | 100.00 | NP_465311 | (inlC) internalin C |
fbpA | 1-1713/1713 | =============== | 0/0 | 311 | 99.83 | 100.00 | NP_465354 | (fbpA) fibronectin-binding protein |
lspA | 1-465/465 | =============== | 0/0 | 372 | 100 | 100.00 | NP_465369 | (lspA) signal peptidase II |
lpeA | 1-933/933 | =============== | 0/0 | 369 | 99.79 | 100.00 | NP_465372 | (lpeA) lipoprotein promoting cell invasion |
bsh | 1-978/978 | =============== | 0/0 | 369 | 100 | 100.00 | NP_465591 | (bsh) bile salt hydrolase |
prsA2 | 1-882/882 | =============== | 0/0 | 375 | 99.89 | 100.00 | NP_465743 | (prsA2) post translocation chaperone PrsA2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sévellec, Y.; Torresi, M.; Félix, B.; Palma, F.; Centorotola, G.; Bilei, S.; Senese, M.; Terracciano, G.; Leblanc, J.-C.; Pomilio, F.; et al. First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain. Pathogens 2020, 9, 802. https://doi.org/10.3390/pathogens9100802
Sévellec Y, Torresi M, Félix B, Palma F, Centorotola G, Bilei S, Senese M, Terracciano G, Leblanc J-C, Pomilio F, et al. First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain. Pathogens. 2020; 9(10):802. https://doi.org/10.3390/pathogens9100802
Chicago/Turabian StyleSévellec, Yann, Marina Torresi, Benjamin Félix, Féderica Palma, Gabriella Centorotola, Stefano Bilei, Matteo Senese, Giuliana Terracciano, Jean-Charles Leblanc, Francesco Pomilio, and et al. 2020. "First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain" Pathogens 9, no. 10: 802. https://doi.org/10.3390/pathogens9100802
APA StyleSévellec, Y., Torresi, M., Félix, B., Palma, F., Centorotola, G., Bilei, S., Senese, M., Terracciano, G., Leblanc, J.-C., Pomilio, F., & Roussel, S. (2020). First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain. Pathogens, 9(10), 802. https://doi.org/10.3390/pathogens9100802