Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water
Abstract
:1. Introduction
2. Opportunistic Premise Plumbing Pathogens and Their Public Health Impact
3. Selection for Opportunistic Premise Plumbing Pathogens in Drinking Water Systems and Premise Plumbing
4. Challenge of Opportunistic Premise Plumbing Pathogens to the Current Water Treatment Paradigm
5. Isolation of Putative Opportunistic Premise Plumbing Pathogens
5.1. Selection for Amoebae-Resisting Microorganisms
5.2. Selection for Disinfectant-Resistant Microorganisms
5.3. Selection of Biofilm-Forming Microorganisms
6. Measures to Reduce OPPPs
6.1. Introduction to Remediation
6.2. Remediation by Water Providers
6.3. Remediation by Residential Building Managers
6.4. Remediation in Hospitals
6.5. Remediation by Homeowners
6.6. Additional Remediation Measures
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, F.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Legionellosis—United States, 2000–2009. Morb. Mortal. Wkly. Rep. 2011, 60, 1083–1086. [Google Scholar]
- National Nosocomial Infections Surveillance. National nosocomial infections surveillance (NNIS) system report, data summary from January 1990-May 1999, Issued June 1999. Am. J. Infect. Control 1999, 27, 520–532. [Google Scholar]
- Marras, T.K.; Chedore, P.; Ying, A.M.; Jamieson, F. Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003. Thorax 2007, 62, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Billinger, M.E.; Olivier, K.N.; Viboud, C.; Montes de Oca, R.; Steiner, C.; Holland, S.M.; Prevots, D.R. Nontuberculous mycobacteria-associated lung disease in hospitalized persons, United States, 1998–2005. Emerg. Infect. Dis. 2009, 15, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- United Nations Population Division. World Population Ageing: 1950–2050. Page 462. United Nations Population Division: United Nations, New York, 2002. Available online: http://www.globalaging.org/ruralaging/world/ageingo/htm (accessed on 26 May 2015).
- Edwards, M.; Rhoads, W.; Pruden, A.; Pearce, A.; Falkinham, J.O., III. Green water systems and opportunistic premise plumbing pathogens. Plumb. Eng. 2014, 42, 63–65. [Google Scholar]
- Kuchta, J.M.; States, S.J.; McGlaughlin, J.E.; Overmeyer, J.H.; Wadowsky, R.M.; McNamara, A.M.; Wolford, R.S.; Yee, R.B. Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl. Environ. Microbiol. 1985, 50, 21–26. [Google Scholar] [PubMed]
- Taylor, R.H.; Falkinham, J.O., III; Norton, C.D.; LeChevallier, M.W. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl. Environ. Microbiol. 2000, 66, 1702–1705. [Google Scholar]
- Grobe, S.; Wingender, J.; Flemmin, H.-K. Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water. Int. J. Hyg. Environ. Health 2001, 204, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Schofield, G.M.; Locci, R. Colonization of components of a model hot water system by Legionella pneumophila. J. Appl. Bacteriol. 1985, 58, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Steed, K.A.; Falkinham, J.O., III. Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 2006, 72, 4007–4100. [Google Scholar] [CrossRef] [PubMed]
- De Beer, D.; Srinivasan, R.; Stewart, P.S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbial. 1994, 60, 4339–4344. [Google Scholar]
- Cooper, I.R.; Hanlon, G.W. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J. Hosp. Infect. 2010, 74, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; McDonnell, G.; Denyer, S.P.; Maillard, J.-Y. Free-living amoebae and their intracellular pathogenic microorganisms: Risks for water quality. FEMS Microbiol. Rev. 2010, 34, 231–259. [Google Scholar] [CrossRef] [PubMed]
- Brieland, J.K.; Fantone, J.C.; Remick, D.G.; LeGendre, M.; McClain, M.; Engleberg, N.C. The role of Legionella pneumophila-infected Hartmanella vermiformis as an infectious particle in a murine model of Legionnaires’ disease. Infect. Immun. 1997, 65, 5330–5333. [Google Scholar] [PubMed]
- Cirillo, J.D.; Falkow, S.; Tompkins, L.; Bermudez, L.E. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 1997, 65, 3759–3767. [Google Scholar] [PubMed]
- Matz, C.; Moreno, A.M.; Alhede, M.; Manefield, M.; Hauser, A.R.; Givskov, M.; Kjelleberg, S. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. Int. Soc. Microb. Ecol. J. 2008, 2, 843–852. [Google Scholar]
- Norton, C.D.; LeChevallier, M.W.; Falkinham, J.O., III. Survival of Mycobacterium avium in a model distribution system. Water Res. 2004, 38, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, R.A., Jr.; Parker, B.C.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous mycobacteria. X. Mycobacterium avium, M. intracellulare, and M. scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am. Rev. Respir. Dis. 1992, 145, 271–275. [Google Scholar]
- Kirchner, R.A.; Parker, B.C.; Falkinham, J.O., III. Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiol. Ecol. 1999, 30, 327–332. [Google Scholar] [CrossRef]
- Favero, M.S.; Carson, L.A.; Bond, W.W.; Petersen, N.J. Pseudomonas aeruginosa: Growth in distilled water from hospitals. Science 1971, 173, 836–838. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, C.A.; Blaser, M.J.; Wang, W.-L. Role of stagnation and obstruction of water flow in isolation of Legionella pneumophila from hospital plumbing. Appl. Environ. Microbial. 1984, 48, 984–987. [Google Scholar]
- Lewis, A.H.; Falkinham, J.O., III. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int. J. Mycobacteriol. 2015, 4, 25–30. [Google Scholar] [CrossRef]
- Sias, S.R.; Stouthamer, A.H.; Ingraham, J.L. The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes. J. Gen. Microbiol. 1980, 118, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.L.; Parker, B.C.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous mycobacteria. IV. Isolation from southeastern US soils and waters and correlations with characteristics. Am. Rev. Respir. Dis. 1984, 120, 84–89. [Google Scholar]
- Falkinham, J.O., III; Norton, C.D.; LeChevallier, M.W. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 2001, 67, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Kusnetsov, J.; Torvinen, E.; Perola, O.; Nousiainen, T.; Katila, M.-L. Colonization of hospital water systems by Legionellae, mycobacteria and other heterotrophic bacteria potentially hazardous to risk group patients. Acta Pathol. Microbiol. Immunol. Scand. 2003, 111, 546–556. [Google Scholar] [CrossRef]
- Williams, M.M.; Armbruster, C.R.; Arduino, M.J. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: A review. Biofouling 2013, 29, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.J.; O’Connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ. Sci. Technol. 2013, 48, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank., D.K.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Nat. Acad. Sci. USA 2008, 106, 16393–16399. [Google Scholar] [CrossRef] [PubMed]
- Bédard, E.; Charron, D.; Lalancette, C.; Déziel, E.; Prévost, M. Recovery of Pseudomonas aeruginosa culturability following copper- and chlorine-induced stress. FEMS Microbiol. Lttr. 2014, 356, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Bej, A.K.; Mahbubani, M.H.; Atlas, R.M. Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl. Environ. Microbiol. 1991, 57, 597–600. [Google Scholar] [PubMed]
- Oliver, J.D. The viable but nonculturable state in bacteria. J. Microbiol. 2005, 43, 93–100. [Google Scholar] [PubMed]
- Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.M.; Flemming, H.K.; Wingender, J. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int. J. Hyg. Environ. Hlth. 2010, 213, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pryor, M.A.; Edwards, M.A.; Falkinham, J.O., III; Pruden, A. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. Water Res. 2013, 47, 5760–5772. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Steinert, M.; Emödy, L.; Amann, R.; Hacker, J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 1997, 63, 2047–2053. [Google Scholar] [PubMed]
- Sunenshine, R.H.; Wright, M.-O.; Maragakis, L.L.; Harris, A.D.; Song, X.; Hebden, J.; Cosgrove, S.E.; Anderson, A.; Carnell, J.; Jernigan, D.B.; et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 2007, 13, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Bifulco, J.M.; Shirey, J.J.; Bissonette, G.K. Detection of Acinetobacter spp. in rural drinking water supplies. Appl. Environ. Microbiol. 1989, 55, 2214–2219. [Google Scholar] [PubMed]
- Cateau, E.; Verdon, J.; Fernandez, B.; Hechard, Y.; Rodier, M.-H. Acanthamoeba sp. promotes the survival and growth of Acinetobacter baumanii. FEMS Microbiol. Lttrs. 2011, 319, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Karumathi, D.P.; Yin, H.-B.; Kollanoor-Johny, A.; Venkitanarayanan, K. Effect of chlorine exposure on the survival and antibiotic gene expression of multidrug resistant Acinetobacter baumannii in water. Int. J. Environ. Res. Public Health 2014, 11, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Hazen, T.C.; Fliermans, C.B.; Hirsch, R.P.; Esch, G.W. Prevalence and distribution of Aeromonas hydrophila in the United States. Appl. Environ. Microbial. 1978, 36, 731–738. [Google Scholar]
- Assanta, M.A.; Roy, D.; Montpetit, D. Adhesion of Aeromonas hydrophila to water distribution system pipes after different contact times. J. Food Protection 1998, 61, 1321–1329. [Google Scholar]
- Sisti, M.; Albano, A.; Brandi, G. Bactericidal effect of chlorine on motile Aeromonas spp. in drinking water supplies and influence of temperature on disinfection efficacy. Lttrs. Appl. Microbiol. 1998, 26, 347–351. [Google Scholar] [CrossRef]
- Thomas, J.M.; Ashbolt, N.J. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ. Sci. Technol. 2011, 45, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Ovrutsky, A.R.; Chan, E.D.; Kartalija, M.; Bai, X.; Jackson, M.; Gibbs, S.; Falkinham, J.O., III; Iseman, M.; Reynolds, G.; McDonnell, G.; et al. Co-occurrence of free-living amoebae and non-tuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticula. Appl. Environ. Microbiol. 2013, 79, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Herrera-Rimann, K.; Blanc, D.S.; Greub, G. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl. Environ. Microbiol. 2006, 72, 2428–2438. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Bouchez, T.; Nicolas, V.; Robert, S.; Loret, J.F.; Lévi, Y. Amoebae in domestic water systems: Resistance to disinfection treatments and implication in Legionella persistence. J. Appl. Microbiol. 2004, 97, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Mullis, S.N.; Falkinham, J.O., III. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J. Appl. Microbiol. 2013, 115, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Mauchline, J.W.S.; Araujo, R.; Wait, R.; Dowsett, A.B.; Dennis, P.J.; Keevil, C.W. Physiology and morphology of Legionella-pneumophila in continuous culture at low oxygen concentration. J. Gen. Microbiol. 1992, 138, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Casini, B.; Buzzigoli, A.; Cristina, M.L.; Spagnolo, A.M.; del Guidice, P.; Brusaferro, S.; Poscia, A.; Moscato, U.; Valentini, P.; Baggiani, A.; et al. Long-term effects of hospital network disinfection on Legionella and other waterborne bacteria in an Italian university hospital. Infect. Control Hosp. Epi. 2014, 35, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Sax, H.; Bloemberg, G.; Hasse, B.; Sommerstein, R.; Kohler, P.; Achermann, Y.; Rössle, M.; Falk, V.; Kuster, S.P.; Böttger, E.C.; Weber, R. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin. Infect. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Wendel, A.F.; Kolbe-Busch, S.; Ressina, S.; Schulze-Röbbecke, R.; Kindgen-Milles, D.; Lorenz, C.; Pfeffer, K.; MacKensie, C.R. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am. J. Infect. Control 2015. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O., III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg. Infect. Dis. 2011, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Bates, H.; Randall, S.K.; Rayssiguier, C.; Bridges, B.A.; Goodman, M.F.; Radman, M. Spontaneous and UV-induced mutations in Escherichia coli K-12 strains with altered or absent DNA polymerase I. J. Bacteriol. 1989, 171, 2480–2484. [Google Scholar] [PubMed]
- Wang, H.; Edwards, M.A.; Falkinham, J.O., III; Pruden, A. Probiotic approach to pathogen control in premise plumbing systems? A review. Environ. Sci. Technol. 2013, 47, 10117–10128. [Google Scholar] [PubMed]
- Rhoads, W.J.; Pruden, A.; Edwards, M.A. Anticipating challenges with in-building disinfection for control of opportunistic pathogens. Water Environ. Res. 2014, 86, 540–549. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkinham, J.O., III; Pruden, A.; Edwards, M. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water. Pathogens 2015, 4, 373-386. https://doi.org/10.3390/pathogens4020373
Falkinham JO III, Pruden A, Edwards M. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water. Pathogens. 2015; 4(2):373-386. https://doi.org/10.3390/pathogens4020373
Chicago/Turabian StyleFalkinham, Joseph O., III, Amy Pruden, and Marc Edwards. 2015. "Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water" Pathogens 4, no. 2: 373-386. https://doi.org/10.3390/pathogens4020373