2-Aminothiophene Derivative SB-83 Inhibits Trypanothione Reductase and Modulates Cytokine Production in Trypanosoma cruzi-Infected Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Compound Obtainment
2.3. Maintenance of Parasites and Cell Cultures
2.4. Anti-Trypanosoma cruzi Activity Against Epimastigote and Trypomastigote Forms
2.5. Evaluation of SB-83 Cytotoxicity Against Epithelial Cells
2.6. Anti-Trypanosoma cruzi Activity Against Intramacrophagic Amastigotes
2.7. Evaluation of the Immunomodulatory Profile of SB-83 in Macrophages Infected with Trypanosoma cruzi
2.7.1. Cytokine Dosage
2.7.2. Nitric Oxide (NO) Dosage
2.7.3. Measurement of Reactive Oxygen Species (ROS)
2.8. Evaluation of the Effect of SB-83 on Trypanothione Reductase (TR) Activity
2.9. Molecular Anchoring
Computational Details
2.10. Ultrastructural Evaluation
2.11. Cell Death Profile Assessment
2.12. Statistical Analysis
3. Results
3.1. Evaluation of Anti-Trypanosoma Activity Against Epimastigote and Trypomastigote Forms of Trypanosoma cruzi
3.2. Evaluation of Cytotoxicity Against LLC-MK2 CCL-7 and Vero CCL-81 Cell Lines
3.3. Anti-Trypanosoma cruzi Activity Assay Against Intramacrophagic Amastigote Forms
3.4. Cytokine Expression Assessment
3.5. Measurement of Nitric Oxide (NO) and Reactive Oxygen Species (ROS) Production
3.6. Effect of SB-83 on Trypanothione Reductase (TR) Activity
3.7. Molecular Dynamics Simulations
3.8. Binding Free Energy Calculated Using the MM/GBSA Method
3.9. Evaluation of the Cell Death Profile of SB-83
3.10. Structural Analysis of Epimastigote Forms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Sousa, A.S.; Vermeij, D.; Ramos, A.N.; Luquetti, A.O. Chagas disease. Lancet 2024, 403, 203–218. [Google Scholar] [CrossRef]
- Ayres, J.; Marcus, R.; Standley, C.J. The Importance of Screening for Chagas Disease Against the Backdrop of Changing Epidemiology in the USA. Curr. Trop. Med. Rep. 2022, 9, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Santos, É.; Menezes Falcão, L. Chagas cardiomyopathy and heart failure: From epidemiology to treatment. Rev. Port. Cardiol. 2020, 39, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.L.N.; da Costa, V.M.; e Silva, R.A. Chagas disease in Brazil: New challenges and perspectives for old problems. Mem. Inst. Oswaldo Cruz 2025, 120, e240279. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, B.M.d.S.; Ferreira, R.R.; Coelho, L.L.; Carvalho, A.C.C.; Garzoni, L.R.; Araujo-Jorge, T.C. Clinical trials for Chagas disease: Etiological and pathophysiological treatment. Front. Microbiol. 2023, 14, 1295017. [Google Scholar] [CrossRef]
- Santana Nogueira, S.; Cardoso Santos, E.; Oliveira Silva, R.; Vilela Gonçalves, R.; Lima, G.D.A.; Dias Novaes, R. Monotherapy and combination chemotherapy for Chagas disease treatment: A systematic review of clinical efficacy and safety based on randomized controlled trials. Parasitology 2022, 149, 1679–1694. [Google Scholar] [CrossRef]
- Neves, W.W.; Neves, R.P.; Macêdo, D.P.C.; de Araújo Eleamen, G.R.; de Moura Kretzschmar, E.A.; Oliveira, E.E.; Mendonça-Junior, F.J.B.; de Lima-Neto, R.G. Incorporation of 2-amino-thiophene derivative in nanoparticles: Enhancement of antifungal activity. Braz. J. Microbiol. 2020, 51, 647–655. [Google Scholar] [CrossRef]
- Rodrigues, K.A.d.F.; Dias, C.N.d.S.; Néris, P.L.D.N.; Rocha, J.d.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; de Medeiros, I.A.; Keesen, T.d.S.L.; et al. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem. 2015, 106, 1–14. [Google Scholar] [CrossRef]
- Rodrigues, R.R.L.; de Sousa, J.M.S.; dos Santos, A.L.S.; de Souza, V.M.R.; Machado, Y.A.A.; de Lima Nunes, T.A.; da Silva, M.V.; de Araújo-Nobre, A.R.; de Araújo, R.S.A.; Mendonça, F.J.B., Jr.; et al. Evaluation of SB-83, a 2-amino-thiophene derivative, against Leishmania species that cause visceral leishmaniasis. Int. Immunopharmacol. 2025, 148, 114106. [Google Scholar] [CrossRef]
- Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça Junior, F.J.B.; de Lima, M.d.C.A.; Pitta, M.G.d.R.; Pitta, I.D.R.; Rêgo, M.J.B.D.M.; Pitta, M.G.D.R. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs 2018, 29, 157–166. [Google Scholar] [CrossRef]
- Carvalho, L.V.N.; Quirino, M.; Binato, R.; Abdelhay, E.; De Oliveira, T.B.; Lima, M.C.A.; Mendonça, F.J.B., Jr.; Pitta, M.G.R.; Pitta, I.R.; Rêgo, M.J.B.M. Avaliação Proteômica do Mecanismo de Ação Antineoplásica do Derivado Tiofeno Sb-83 em Linhagem Leucemica Resistente. Galoa 2017, 5, 94291. [Google Scholar] [CrossRef]
- da Silva, E.D.L.; dos Santos, F.A.; de Oliveira, J.T.; dos Santos, F.V.; Mendonça, F.J.B., Jr.; de Lima, M.d.C.O.; Pitta, M.G.d.R.; Rego, M.B.d.J.d.M.; Pereira, M.C. Genotoxicity and Anticancer Effects of the Aminothiophene Derivatives SB-44, SB- 83, and SB-200 in Cancer Cells. Anticancer Agents Med. Chem. 2023, 23, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Souza, B.; De Oliveira, T.; Aquino, T.; de Lima, M.; Pitta, I.; Galdino, S.; Lima, E.; Gonçalves-Silva, T.; Militão, G.; Scotti, L.; et al. Preliminary antifungal and cytotoxic evaluation of synthetic cycloalkyl[b]thiophene derivatives with PLS-DA analysis. Acta Pharm. 2012, 62, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers. 2011, 15, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Alves Conserva, G.A.; Mesquita, J.T.; Galuppo, M.K.; Tempone, A.G.; Neves, B.J.; Andrade, C.H.; et al. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. Phytomedicine 2017, 24, 62–67. [Google Scholar] [CrossRef]
- Dofuor, A.K.; Kumatia, E.K.; Chirawurah, J.D.; Ayertey, F. Antiplasmodial, Antitrypanosomal, and Cytotoxic Effects of Anthonotha macrophylla, Annickia polycarpa, Tieghemella heckelii, and Antrocaryon micraster Extracts. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 9195753. [Google Scholar] [CrossRef]
- Orlando, L.M.R.; Lara, L.d.S.; Lechuga, G.C.; Rodrigues, G.C.; Pandoli, O.G.; de Sá, D.S.; Pereira, M.C.d.S. Antitrypanosomal Activity of 1,2,3-Triazole-Based Hybrids Evaluated Using In Vitro Preclinical Translational Models. Biology 2023, 12, 1222. [Google Scholar] [CrossRef]
- Pardo-Rodriguez, D.; Lasso, P.; Mateus, J.; Mendez, J.; Puerta, C.J.; Cuéllar, A.; Robles, J.; Cuervo, C. A terpenoid-rich extract from Clethra fimbriata exhibits anti-Trypanosoma cruzi activity and induces T cell cytokine production. Heliyon 2022, 8, e09182. [Google Scholar] [CrossRef]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Abreu-Silva, A.L.; Calabrese, K.d.S.; Mendes Filho, N.E.; Mouchrek, A.N.; Almeida-Souza, F. GC-MS Characterization of Antibacterial, Antioxidant, and Antitrypanosomal Activity of Syzygium aromaticum Essential Oil and Eugenol. Evid.-Based Complement. Altern. Med. 2021, 2021, 6663255. [Google Scholar] [CrossRef]
- Pandey, R.P.; Nascimento, M.S.; Franco, C.H.; Bortoluci, K.; Silva, M.N.; Zingales, B.; Gibaldi, D.; Barrios, L.C.; Lannes-Vieira, J.; Cariste, L.M.; et al. Drug Repurposing in Chagas Disease: Chloroquine Potentiates Benznidazole Activity against Trypanosoma cruzi In Vitro and In Vivo. Antimicrob. Agents Chemother. 2022, 66, e0028422. [Google Scholar] [CrossRef]
- da Silva, C.F.; da Silva, P.B.; Batista, M.M.; Daliry, A.; Tidwell, R.R.; Soeiro, M.d.N.C. The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 2010, 105, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J. Chromatogr. B 2007, 851, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Szczesny, B.; Wan, X.; Putluri, N.; Garg, N.J. Pentose Phosphate Shunt Modulates Reactive Oxygen Species and Nitric Oxide Production Controlling Trypanosoma cruzi in Macrophages. Front. Immunol. 2018, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.S.; Castro-Pinto, D.B.; Machado, G.C.; Maciel, M.A.M.; Echevarria, A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine 2015, 22, 1133–1137. [Google Scholar] [CrossRef]
- Shivakumar, D.; Harder, E.; Damm, W.; Friesner, R.A.; Sherman, W. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field. J. Chem. Theory Comput. 2012, 8, 2553–2558. [Google Scholar] [CrossRef]
- Silva-Junior, E.F.; Barcellos Franca, P.H.; Quintans-Junior, L.J.; Mendonca-Junior, F.J.B.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Dynamic Simulation, Docking and DFT Studies Applied to a Set of Anti-Acetylcholinesterase Inhibitors in the enzyme β-Secretase (BACE-1): An Important Therapeutic Target in Alzheimer’s Disease. Curr. Comput. Aided Drug Des. 2017, 13. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Bolaji, O.Q.; Ojo, T.O.; Adegun, I.P.; Adebodun, S. Molecular Mechanics with Generalized Born Surface Area (MMGBSA) Calculations and Docking Studies Unravel some Antimalarial Compounds Using Heme O Synthase as Therapeutic Target. ChemistrySelect 2023, 8, e202303686. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert. Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Mhetre, N.M.; Bhatambrekar, A.L.; Priya, D.; Saravanan, V.; Kathiravan, M.; Shevate, K.S.; Rajagopal, K.; Asgaonkar, K.D.; Chitre, T.S. Rational design of some 1,3,4 trisubstituted pyrazole-thiazole derivatives to serve as MtInhA inhibitors using QSAR, ADMET, molecular docking, MM-GBSA, and molecular dynamics simulations approach. Chem. Phys. Impact 2024, 9, 100769. [Google Scholar] [CrossRef]
- Saha, B.; Das, A.; Jangid, K.; Kumar, A.; Kumar, V.; Jaitak, V. Identification of coumarin derivatives targeting acetylcholinesterase for Alzheimer’s disease by field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, MM/GBSA, ADME and MD Simulation study. Curr. Res. Struct. Biol. 2024, 7, 100124. [Google Scholar] [CrossRef]
- Tavares-Bastos, L.; Cunha, L.D.; França, F.G.R.; Diele-Viegas, L.M.; Vieira, G.H.C.; Santos, M.G.; Vaqueiro, A.; Gower, D.; Colli, G.; Báo, S. Comparative electron microscopy study of spermatozoa in snakes (Lepidosauria, Squamata). Micron 2024, 182, 103637. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.L.; Canales, C.S.C.; Demarqui, F.M.; Fernandes, G.F.S.; dos Santos, C.G.; Prates, J.L.B.; da Silva, I.G.M.; Barros-Cordeiro, K.B.; Báo, S.N.; de Andrade, L.N.; et al. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front. Microbiol. 2024, 15, 1487829. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 1999, 7, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Escobedo, R.; Méndez-Álvarez, D.; Vázquez, C.; Saavedra, E.; Vázquez, K.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Gonzalez-Gonzalez, A.; Rivera, G.; Nogueda-Torres, B. Molecular Docking-Based Virtual Screening of FDA-Approved Drugs Using Trypanothione Reductase Identified New Trypanocidal Agents. Molecules 2024, 29, 3796. [Google Scholar] [CrossRef]
- Mendonça, A.A.S.; Coelho, C.M.; Veloso, M.P.; Caldas, I.S.; Gonçalves, R.V.; Teixeira, A.L.; De Miranda, A.S.; Novaes, R.D. Relevance of Trypanothione Reductase Inhibitors on Trypanosoma cruzi Infection: A Systematic Review, Meta-Analysis, and In Silico Integrated Approach. Oxidative Med. Cell. Longev. 2018, 2018, 8676578. [Google Scholar] [CrossRef]
- Gerpe, A.; Álvarez, G.; Benítez, D.; Boiani, L.; Quiroga, M.; Hernández, P.; Sortino, M.; Zacchino, S.; González, M.; Cerecetto, H. 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene. Bioorg. Med. Chem. 2009, 17, 7500–7509. [Google Scholar] [CrossRef]
- Silva-Júnior, E.; Silva, E.; França, P.; Silva, J.; Barreto, E.; Silva, E.; Ferreira, R.; Gatto, C.; Moreira, D.; Siqueira-Neto, J.; et al. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem. 2016, 24, 4228–4240. [Google Scholar] [CrossRef]
- Saha, A.; Sarker, K.; Ghosh, A.; Mishra, S.; Sen, S. Analogue Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Some Thalidomide Metabolites as Selective Cytotoxic and Antiangiogenic Agents against Multiple Myeloma. Russ. J. Bioorg. Chem. 2022, 48, 115–124. [Google Scholar] [CrossRef]
- Rodriguez, F.; Iniguez, E.; Contreras, G.P.; Ahmed, H.; Costa, T.E.M.M.; Skouta, R.; Maldonado, R.A. Development of Thiophene Compounds as Potent Chemotherapies for the Treatment of Cutaneous Leishmaniasis Caused by Leishmania major. Molecules 2018, 23, 1626. [Google Scholar] [CrossRef]
- Peña, I.; Manzano, M.P.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; et al. New Compound Sets Identified from High Throughput Phenotypic Screening Against Three Kinetoplastid Parasites: An Open Resource. Sci. Rep. 2015, 5, 8771. [Google Scholar] [CrossRef]
- Tayama, Y.; Mizukami, S.; Toume, K.; Komatsu, K.; Yanagi, T.; Nara, T.; Tieu, P.; Huy, N.T.; Hamano, S.; Hirayama, K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop. Med. Health 2023, 51, 12. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.d.S.; Costa, D.d.S.; Cunha-Júnior, E.F.; Andrade-Neto, V.V.; Fairlamb, A.H.; Wyllie, S.; Goulart, M.O.F.; Santos, D.C.; Silva, T.L.; Alves, M.A.; et al. Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Med. Chem. Lett. 2021, 12, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.G.A.; Koh, C.C.; Souza-Silva, T.G.; Passos, L.S.A.; Silva, A.C.C.; Velikkakam, T.; Villani, F.; Coelho, J.S.; Brodskyn, C.I.; Teixeira, A.; et al. T-Cell Subpopulations Exhibit Distinct Recruitment Potential, Immunoregulatory Profile and Functional Characteristics in Chagas versus Idiopathic Dilated Cardiomyopathies. Front. Cardiovasc. Med. 2022, 9, 787423. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.C.; Neves, E.G.A.; de Souza-Silva, T.G.; Carvalho, A.C.; Pinto, C.H.R.; Galdino, A.S.; Gollob, K.J.; Dutra, W.O. Cytokine Networks as Targets for Preventing and Controlling Chagas Heart Disease. Pathogens 2023, 12, 171. [Google Scholar] [CrossRef]
- González-Montero, M.-C.; Andrés-Rodríguez, J.; García-Fernández, N.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; García-Estrada, C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024, 29, 2214. [Google Scholar] [CrossRef]
- Patterson, S.; Jones, D.C.; Shanks, E.J.; Frearson, J.A.; Gilbert, I.H.; Wyatt, P.G.; Fairlamb, A.H. Synthesis and Evaluation of 1-(1-(Benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) Analogues as Inhibitors of Trypanothione Reductase. ChemMedChem 2009, 4, 1341–1353. [Google Scholar] [CrossRef]
- Zani, C.L.; Fairlamb, A.H. 8-Methoxy-naphtho [2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase. Mem. Inst. Oswaldo Cruz 2003, 98, 565–568. [Google Scholar] [CrossRef]
- Hess, J.D.; Macias, L.H.; Gutierrez, D.A.; Moran-Santibanez, K.; Contreras, L.; Medina, S.; Villanueva, P.J.; Kirken, R.A.; Varela-Ramirez, A.; Penichet, M.L.; et al. Identification of a Unique Cytotoxic Thieno [2,3-c]Pyrazole Derivative with Potent and Selective Anticancer Effects In Vitro. Biology 2022, 11, 930. [Google Scholar] [CrossRef]
- Swain, R.M.; Sanchez, A.; Gutierrez, D.A.; Varela-Ramirez, A.; Aguilera, R.J. Thiophene derivative inflicts cytotoxicity via an intrinsic apoptotic pathway on human acute lymphoblastic leukemia cells. PLoS ONE 2023, 18, e0295441. [Google Scholar] [CrossRef]












| Compounds | MK2 | Vero | RAW | Epimastigote | Trypomastigote | Intracellular Amastigotes | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CC50 (µM) | CC50 (µM) | CC50 (µM) | IC50 (µM) | SI * MK2 | SI * Vero | SI * RAW | EC50 (µM) | SI * MK2 | SI * Vero | SI * RAW | EC50 (µM) | SI * MK2 | SI * Vero | SI * RAW | |
| SB-83 | 77.80 ± 2.05 | 24.21 ±1.2 | 52.27 a | 6.23 ± 0.84 | 12.49 | 3.89 | 8.39 | 7.31 ± 0.52 | 10.64 | 3.31 | 7.15 | 5.12 ± 0.84 | 15.19 ± 0.93 | 4.72 | 10.20 |
| Benznidazol | >200 | 147.37 ± 2.74 | 79.23 ± 0.23 | 111.81 ± 2.11 | >1.79 | 1.32 | 0.71 | 21.11 ± 1.1 | >9.47 | 6.98 | 3.75 | 24.0 ± 2.11 | >8.33 | 6.14 | 3.30 |
| Complex | ΔG ± SD (kcal/mol) a | ΔG Range (kcal/mol) b |
|---|---|---|
| SB-83-Z binding site | −61.45 ± 8.62 | −79.79 to −53.76 |
| SB-83-Catalytic site | −44.64 ± 4.39 | −50.24 to −34.72 |
| SB-83-Mepacrina site | −38.09 ± 1.77 | −41.09 to −34.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
dos Santos, A.L.S.; de Souza, V.M.R.; de Sousa, J.M.S.; Rodrigues, R.R.L.; Braga, M.L.; Da Silva Sousa, M.G.G.; de Oliveira, D.S.; da Silva, M.V.F.; da Silva-Junior, E.F.; de Lima Nunes, T.A.; et al. 2-Aminothiophene Derivative SB-83 Inhibits Trypanothione Reductase and Modulates Cytokine Production in Trypanosoma cruzi-Infected Cells. Pathogens 2026, 15, 64. https://doi.org/10.3390/pathogens15010064
dos Santos ALS, de Souza VMR, de Sousa JMS, Rodrigues RRL, Braga ML, Da Silva Sousa MGG, de Oliveira DS, da Silva MVF, da Silva-Junior EF, de Lima Nunes TA, et al. 2-Aminothiophene Derivative SB-83 Inhibits Trypanothione Reductase and Modulates Cytokine Production in Trypanosoma cruzi-Infected Cells. Pathogens. 2026; 15(1):64. https://doi.org/10.3390/pathogens15010064
Chicago/Turabian Styledos Santos, Airton Lucas Sousa, Vanessa Maria Rodrigues de Souza, Julyanne Maria Saraiva de Sousa, Raiza Raianne Luz Rodrigues, Mércya Lopes Braga, Maria Gabrielly Gonçalves Da Silva Sousa, Douglas Soares de Oliveira, Mirely Vitória Farias da Silva, Edeildo Ferreira da Silva-Junior, Thaís Amanda de Lima Nunes, and et al. 2026. "2-Aminothiophene Derivative SB-83 Inhibits Trypanothione Reductase and Modulates Cytokine Production in Trypanosoma cruzi-Infected Cells" Pathogens 15, no. 1: 64. https://doi.org/10.3390/pathogens15010064
APA Styledos Santos, A. L. S., de Souza, V. M. R., de Sousa, J. M. S., Rodrigues, R. R. L., Braga, M. L., Da Silva Sousa, M. G. G., de Oliveira, D. S., da Silva, M. V. F., da Silva-Junior, E. F., de Lima Nunes, T. A., da Silva, M. V., da Silva, I. G. M., Barros-Cordeiro, K. B., Báo, S. N., Mendonça Junior, F. J. B., & da Franca Rodrigues, K. A. (2026). 2-Aminothiophene Derivative SB-83 Inhibits Trypanothione Reductase and Modulates Cytokine Production in Trypanosoma cruzi-Infected Cells. Pathogens, 15(1), 64. https://doi.org/10.3390/pathogens15010064

