Rapid and Simple Detection of Mycobacterium avium subsp. paratuberculosis Using a Lateral Flow Assay Based on CRISPR-Cas12a Combined with Recombinase Polymerase Amplification or Nested PCR
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Extraction
2.2. Design and Preparation of crRNA and Primers
2.3. RPA Assay and Nested PCR
2.4. LbCas12a/crRNA Transcleavage Assay
2.5. Clinical Sample Validation
3. Results
3.1. Optimization of Reaction Conditions
3.2. Sensitivity and Specificity of the RPA– or Nested PCR–CRISPR-Cas12a Detection Platforms
3.3. Clinical Performance Evaluation of MAP RPA– or Nested PCR–CRISPR-Cas12a Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Xue, S.Y.; Ma, W.; Li, M.Y.; Meng, W.K.; Ding, Y.L.; Yang, B.; Lv, Y.R.; Chen, R.B.; Wu, Z.H.; Tunala, S.; et al. The Impact of Mycobacterium avium subsp. paratuberculosis on Intestinal Microbial Community Composition and Diversity in Small-Tail Han Sheep. Pathogens 2024, 13, 1118. [Google Scholar] [CrossRef]
- Li, M.Y.; Meng, W.K.; Ma, W.; Ding, Y.L.; Yang, B.; Zhao, W.H.; Bayaer, H.; Bagen, A.; Chen, R.B.; Tunala, S.; et al. Sheep challenged with sheep-derived type II Mycobacterium avium subsp. paratuberculosis: The first experimental model of paratuberculosis in China. BMC Vet. Res. 2025, 21, 298. [Google Scholar] [CrossRef] [PubMed]
- Hasonova, L.; Pavlik, I. Economic impact of paratuberculosis in dairy cattle herds: A review. Vet. Med.—Czech. 2006, 51, 193–211. [Google Scholar] [CrossRef]
- Rasmussen, P.; Barkema, H.W.; Mason, S.; Beaulieu, E.; Hall, D.C. Economic losses due to Johne’s disease (paratuberculosis) in dairy cattle. J. Dairy Sci. 2021, 104, 3123–3143. [Google Scholar] [CrossRef]
- Kuenstner, L.; Kuenstner, J.T. Mycobacterium avium ssp. paratuberculosis in the Food Supply: A Public Health Issue. Front. Public Health 2021, 9, 647448. [Google Scholar] [CrossRef] [PubMed]
- Idris, S.M.; Eltom, K.H.; Okuni, J.B.; Ojok, L.; Elmagzoub, W.A.; El Wahed, A.A.; Eltayeb, E.; Gameel, A.A. Paratuberculosis: The Hidden Killer of Small Ruminants. Animals 2021, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lv, Y.R.; Yang, B.; Wang, H.; Jia, J.T.; Wu, Z.H.; Nie, M.; Sun, L.Y.; Xue, S.Y.; Ding, Y.L.; et al. Prevalence and Genotyping of Mycobacterium avium subsp. paratuberculosis in Sheep from Inner Mongolia, China. Vet. Sci. 2025, 12, 326. [Google Scholar] [CrossRef]
- Djonne, B. Paratuberculosis in Goats; CABI: Boston, MA, USA, 2020; pp. 174–187. [Google Scholar]
- Stabel, J.R. An improved method for cultivation of Mycobacterium paratuberculosis from bovine fecal samples and comparison to three other methods. J. Vet. Diagn. Investig. 1997, 9, 375–380. [Google Scholar] [CrossRef]
- Sun, W.; Li, C.; Wu, X.; Li, Y.; Yang, L.; Liu, Y.; Cheng, X.; Guo, S.; Ma, L.; Qiu, H.; et al. Point-of-care detection of mycobacterium in bovine feces using a portable real-time loop-mediated isothermal amplification system. Sens. Actuators B Chem. 2025, 440, 137857. [Google Scholar] [CrossRef]
- Singh, V.K.; Gupta, V.; Das, C.; Kumar, A.; Yadav, S.K. Polymerase spiral reaction assay for rapid visual detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. Sci. Rep. 2025, 15, 27149. [Google Scholar] [CrossRef]
- Leite, F.L.; Reinhardt, T.A.; Bannantine, J.P.; Stabel, J.R. Envelope protein complexes of Mycobacterium avium subsp. paratuberculosis and their antigenicity. Vet. Microbiol. 2015, 175, 275–285. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Chai, L.; Cui, X.; Liu, H.; Zhang, Y.; Pan, Y.; Li, C.; Le, T. CRISPR/cas toolbox: Unveiling the secret weapon for SNP detection. TrAC Trends Anal. Chem. 2025, 192, 118321. [Google Scholar] [CrossRef]
- Jiang, M.; Xie, J.; Zhang, C.; Liu, Y.; Wang, G.; Wang, W.; Xu, W. Development of a rapid and visual detection platform for Pseudomonas plecoglossicida in large yellow croaker (Larimichthys crocea) based on the RPA-CRISPR/Cas12a system. Aquaculture 2025, 608, 742704. [Google Scholar] [CrossRef]
- Leung, R.K.; Cheng, Q.X.; Wu, Z.L.; Khan, G.; Liu, Y.; Xia, H.Y.; Wang, J. CRISPR-Cas12-based nucleic acids detection systems. Methods 2022, 203, 276–281. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wang, J.; Liu, G. CRISPR/Cas Systems towards Next-Generation Biosensing. Trends Biotechnol. 2019, 37, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Xu, M.; Luo, S.; Yang, Y.; Zhong, J.; Zhou, J.; Fan, H.; Li, X.; Chen, Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front. Bioeng. Biotechnol. 2023, 11, 1273988. [Google Scholar] [CrossRef] [PubMed]
- Uno, N.; Li, Z.; Avery, L.; Sfeir, M.M.; Liu, C. CRISPR gel: A one-pot biosensing platform for rapid and sensitive detection of HIV viral RNA. Anal. Chim. Acta 2023, 1262, 341258. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, K.; Wang, Y.; Li, D.; Cui, Z.; Huang, J.; Zhang, S.; Li, X.; Zhang, L. CRISPR/Cas12a-based on-site diagnostics of Cryptosporidium parvum IId-subtype-family from human and cattle fecal samples. Parasites Vectors 2021, 14, 208. [Google Scholar] [CrossRef]
- Hodgeman, R.; Liu, Y.; Rochfort, S.; Rodoni, B. Development and evaluation of genomics informed real-time PCR assays for the detection and strain typing of Mycobacterium avium subsp. paratuberculosis. J. Appl. Microbiol. 2024, 135, lxae107. [Google Scholar] [CrossRef] [PubMed]
- Johne, H.A.; Frothingham, L. Ein eigenthuemlicher fall von tuberculose beim Rind. Dtsch. Z. Für Tiermed. Und Pathol. 1895, 21, 438–454. [Google Scholar]
- Dziedzinska, R.; Slana, I. Mycobacterium avium subsp. paratuberculosis—An Overview of the Publications from 2011 to 2016. Curr. Clin. Microbiol. Rep. 2017, 4, 19–28. [Google Scholar] [CrossRef]
- Griss, S.; Knific, T.; Buzzell, A.; Carmo, L.P.; Schüpbach-Regula, G.; Meylan, M.; Ocepek, M.; Thomann, B. A scoping review on associations between paratuberculosis and productivity in cattle. Front. Vet. Sci. 2024, 11, 1352623. [Google Scholar] [CrossRef]
- McAloon, C.G.; Roche, S.; Ritter, C.; Barkema, H.W.; Whyte, P.; More, S.J.; O’Grady, L.; Green, M.J.; Doherty, M.L. A review of paratuberculosis in dairy herds—Part 1: Epidemiology. Vet. J. 2019, 246, 59–65. [Google Scholar] [CrossRef]
- Fecteau, M.E. Paratuberculosis in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 209–222. [Google Scholar] [CrossRef]
- Dow, C.T.; Pierce, E.S.; Sechi, L.A. Mycobacterium paratuberculosis: A HERV Turn-On for Autoimmunity, Neurodegeneration, and Cancer? Microorganisms 2024, 12, 1890. [Google Scholar] [CrossRef]
- Kostoulas, P.; Browne, W.J.; Nielsen, S.S.; Leontides, L. Bayesian mixture models for partially verified data: Age- and stage-specific discriminatory power of an antibody ELISA for paratuberculosis. Prev. Vet. Med. 2013, 111, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T.; Alvarez, B.L. Mycobacterium paratuberculosis zoonosis is a One Health emergency. EcoHealth 2022, 19, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N.; et al. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet. Res. 2019, 15, 198. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. Systematic Assessment of Mycobacterium avium Subspecies paratuberculosis Infections from 1911–2019: A Growth Analysis of Association with Human Autoimmune Diseases. Microorganisms 2020, 8, 1212. [Google Scholar] [CrossRef]
- Bruczyńska, M.; Didkowska, A.; Brzezińska, S.; Nowak, M.; Filip-Hutsch, K.; Kalicki, M.; Augustynowicz-Kopeć, E.; Anusz, K. Mycobacterium avium Subspecies paratuberculosis in Asymptomatic Zoo Herbivores in Poland. Animals 2023, 13, 1022. [Google Scholar] [CrossRef]
- Koo, H.C.; Park, Y.H.; Hamilton, M.J.; Barrington, G.M.; Davies, C.J.; Kim, J.B.; Dahl, J.L.; Waters, W.R.; Davis, W.C. Analysis of the immune response to Mycobacterium avium subsp. paratuberculosis in experimentally infected calves. Infect. Immun. 2004, 72, 6870–6883. [Google Scholar] [CrossRef]
- Cousins, D.V.; Whittington, R.; Marsh, I.; Masters, A.; Evans, R.J.; Kluver, P. Mycobacteria distenct from Mycobacterium avium subsp. paratuberculosis isolated from the faeces of ruminants possess IS900-like sequences detectable IS900 polymerase chain reaction: Implications for diagnosis. Mol. Cell. Probes 1999, 13, 431–442. [Google Scholar] [CrossRef]
- Englund, S.; Bölske, G.; Johansson, K.E. An IS900-like sequence found in a Mycobacterium sp. other than Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol. Lett. 2002, 209, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Plain, K.M.; Marsh, I.B.; Waldron, A.M.; Galea, F.; Whittington, A.M.; Saunders, V.F.; Begg, D.J.; de Silva, K.; Purdie, A.C.; Whittington, R.J. High-throughput direct fecal PCR assay for detection of Mycobacterium avium subsp. paratuberculosis in sheep and cattle. J. Clin. Microbiol. 2014, 52, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kemps-Mols, B.; Spruyt-Gerritse, M.; Anholts, J.; Claas, F.; Eikmans, M. The source of SYBR green master mix determines outcome of nucleic acid amplification reactions. BMC Res. Notes 2016, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Farr, R.; Joglekar, M.; Januszewski, A.; Hardikar, A. Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs. J. Vis. Exp. JoVE 2015, 98, 52586. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, H.; Liu, Q.; Qian, W.; Li, Y.; Liu, J.; Xu, R. Establishment of RPA-Cas12a-Based Fluorescence Assay for Rapid Detection of Feline Parvovirus. Pol. J. Microbiol. 2024, 73, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Paenkaew, S.; Poommouang, A.; Pradit, W.; Chomdej, S.; Nganvongpanit, K.; Siengdee, P.; Buddhachat, K. Feasibility of implementing RPA coupled with CRISPR-Cas12a (RPA-Cas12a) for Hepatozoon canis detection in dogs. Vet. Parasitol. 2024, 331, 110298. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lu, Y.; Meng, X.; Chen, D.; Wu, C.; Song, D. Visual and self-contained diagnosis of Salmonella using RPA-CRISPR on a centrifugal force driven microfluidic system. Food Microbiol. 2025, 132, 104844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cao, S.; Sun, M.; Yang, Q.; Huang, T.; Yang, X.; Li, J.; Zhang, X.; Li, X.; Wang, X.; et al. Rapid visual detection of Giardia duodenalis in faecal samples using an RPA-CRISPR/Cas12a system. Parasitol. Res. 2024, 123, 176. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Anal. Chem. TRAC 2018, 98, 19–35. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lv, Y.-R.; Liu, Y.-Y.; Zhang, R.; Yang, B.; Xue, S.-Y.; Ding, Y.-L.; Jia, J.-T.; Bayaer, H.; Bagen, A.; Chen, R.-B.; et al. Rapid and Simple Detection of Mycobacterium avium subsp. paratuberculosis Using a Lateral Flow Assay Based on CRISPR-Cas12a Combined with Recombinase Polymerase Amplification or Nested PCR. Pathogens 2026, 15, 24. https://doi.org/10.3390/pathogens15010024
Lv Y-R, Liu Y-Y, Zhang R, Yang B, Xue S-Y, Ding Y-L, Jia J-T, Bayaer H, Bagen A, Chen R-B, et al. Rapid and Simple Detection of Mycobacterium avium subsp. paratuberculosis Using a Lateral Flow Assay Based on CRISPR-Cas12a Combined with Recombinase Polymerase Amplification or Nested PCR. Pathogens. 2026; 15(1):24. https://doi.org/10.3390/pathogens15010024
Chicago/Turabian StyleLv, Yue-Rong, Yi-Yang Liu, Rong Zhang, Bo Yang, Shi-Yuan Xue, Yu-Lin Ding, Jun-Tao Jia, Hasi Bayaer, Alateng Bagen, Rui-Bin Chen, and et al. 2026. "Rapid and Simple Detection of Mycobacterium avium subsp. paratuberculosis Using a Lateral Flow Assay Based on CRISPR-Cas12a Combined with Recombinase Polymerase Amplification or Nested PCR" Pathogens 15, no. 1: 24. https://doi.org/10.3390/pathogens15010024
APA StyleLv, Y.-R., Liu, Y.-Y., Zhang, R., Yang, B., Xue, S.-Y., Ding, Y.-L., Jia, J.-T., Bayaer, H., Bagen, A., Chen, R.-B., Tunala, S., Zhao, L., & Liu, Y.-H. (2026). Rapid and Simple Detection of Mycobacterium avium subsp. paratuberculosis Using a Lateral Flow Assay Based on CRISPR-Cas12a Combined with Recombinase Polymerase Amplification or Nested PCR. Pathogens, 15(1), 24. https://doi.org/10.3390/pathogens15010024

