Dietary Ferrous Sulfate Enhances Resistance to Vibrio splendidus-Induced Skin Ulceration in Apostichopus japonicus via Immune and Antioxidant Modulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Sea Cucumbers
2.1.2. Pathogenic Strain
2.1.3. Feed Preparation
2.1.4. Reagents
2.2. Experimental Design
2.3. Sample Collection
2.4. Measurement of Phagocytic and Respiratory Burst Activity
2.5. Immune and Antioxidant Enzyme Activity Assays
2.6. RNA Extraction and Real-Time Fluorescence Quantitative PCR (qPCR)
2.6.1. RNA Extraction
2.6.2. cDNA Synthesis
2.6.3. qPCR Reaction
2.7. Statistical Analysis
3. Results
3.1. Survival Rate
3.2. Phagocytic Cell Activity in Coelomic Fluid
3.3. Respiratory Burst Activity in Coelomic Fluid
3.4. Immune and Antioxidant-Related Enzyme Activities
3.5. Gene Expression Analysis
4. Discussion
4.1. Long-Term Iron Supplementation Enhances Sea Cucumber Resistance to Pathogen Infection
4.2. Synergistic Regulation of Oxidative Stress and the Antioxidant Defense System Enhances Host Immune Resilience
4.3. Humoral Immune Regulation and Associated Gene Expression Mechanisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Gao, Y.; Qi, Y.-X.; Song, Z.-Y.; Li, Z.-B.; Lin, Y.-T.; Zhao, Q. Assessment of the Nutritional Value of Cultured Sea Cucumber Apostichopus japonicus. J. Aquat. Food Prod. Technol. 2021, 30, 868–879. [Google Scholar] [CrossRef]
- Xia, S.; Wang, X. Chapter 19—Nutritional and Medicinal Value. Dev. Aquac. Fish. Sci. 2015, 39, 353–365. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, F.; Sun, X.-Q.; Hong, X.; Dong, S.; Wang, B.; Tang, X.-X.; Wang, Y. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). J. Invertebr. Pathol. 2010, 105, 236–242. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, W.; Li, C. Vibrio splendidus virulence to Apostichopus japonicus is mediated by hppD through glutamate metabolism and flagellum assembly. Virulence 2022, 13, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, J.; Pan, Y.; Sun, H.; Guan, X.; Gao, S.; Chen, Z.; Dong, Y.; Zhou, Z. Proteomic analysis reveals the important roles of alpha-5-collagen and ATP5β during skin ulceration syndrome progression of sea cucumber Apostichopus japonicus. J. Proteom. 2018, 175, 136–143. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, W.; Zhang, W.; Li, C. Characterization of a metalloprotease involved in Vibrio splendidus infection in the sea cucumber, Apostichopus japonicus. Microb. Pathog. 2016, 101, 96–103. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Zhao, X.; Shao, Y.; Guo, M.; Lv, Z.; Li, C.; Han, Q.; Zhang, W. Green fluorescent protein-tagged Vibrio splendidus for monitoring bacterial infection in the sea cucumber Apostichopus japonicus. Aquaculture 2020, 523, 735169. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.-G.; Sun, Y.; Mai, B.; Li, Q. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Y.; Jin, L.; Xu, Y.; Wang, L.; Ren, T.; Wang, K. Enhancement of non-specific immune response in sea cucumber (Apostichopus japonicus) by Astragalus membranaceus and its polysaccharides. Fish Shellfish Immunol. 2009, 27, 757–762. [Google Scholar] [CrossRef]
- Wei, J.; Wang, S.; Pei, D.; Liu, Y.; Liu, Y.; Di, D. Polysaccharide from Enteromorpha prolifera enhances non-specific immune responses and protection against Vibrio splendidus infection of sea cucumber. Aquac. Int. 2015, 23, 661–670. [Google Scholar] [CrossRef]
- Gu, M.; Ma, H.; Mai, K.; Zhang, W.; Bai, N.; Wang, X. Effects of dietary β-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol. 2011, 31, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Li, X.-A.; Li, L.; Lou, Y.-C.; Yu, C.-S.; Xu, H.-P.; Xu, T. Construction and reflections on the disease prevention and control system of aquatic organisms based on management perspective. Isr. J. Aquac.-Bamidgeh 2024, 76, 113–120. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, X.; Zhou, W.; Lee, J.; Wang, S.; Cui, Z.; Zhang, H.; Mo, H.; Hu, L. Ferrous sulfate efficiently kills Vibrio parahaemolyticus and protects salmon sashimi from its contamination. Int. J. Food Microbiol. 2022, 382, 109929. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-L.; Jiang, W.D.; Wu, P.; Liu, Y.; Zhou, X.Q.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.A.; Feng, L. The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017, 65, 145. [Google Scholar] [CrossRef]
- Yang, L.; Sun, L.; Li, C. NOX-derived ROS modulates the antibacterial immune responses in coelomocytes of Apostichopus japonicus. Aquaculture 2024, 588, 740953. [Google Scholar] [CrossRef]
- Wang, C.; Xiang, Y.; Shao, Y.; Li, C. Ferroptosis resists intracellular Vibrio splendidus AJ01 mediated by ferroportin in sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2024, 149, 109585. [Google Scholar] [CrossRef]
- Wu, Y.; Ming, T.; Huo, C.; Qiu, X.; Su, C.; Lu, C.; Zhou, J.; Li, Y.; Su, X. Crystallographic characterization of a marine invertebrate ferritin from the sea cucumber Apostichopus japonicus. FEBS Open Bio 2022, 12, 664–674. [Google Scholar] [CrossRef]
- Beck, G.; Ellis, T.W.; Habicht, G.S.; Schluter, S.F.; Marchalonis, J.J. Evolution of the acute phase response: Iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev. Comp. Immunol. 2001, 26, 11–26. [Google Scholar] [CrossRef]
- Zhang, P.; Li, C.; Zhang, R.; Zhang, W.; Jin, C.; Wang, L.; Song, L. The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber. Genetics 2015, 201, 1397–1410. [Google Scholar] [CrossRef]
- Shi, Y.; Liao, C.; Dai, F.; Zhang, Y.; Li, C.; Liang, W. Vibrio splendidus Fur regulates virulence gene expression, swarming motility, and biofilm formation, affecting its pathogenicity in Apostichopus japonicus. Front. Vet. Sci. 2023, 10, 1207831. [Google Scholar] [CrossRef]
- Gu, M.; Ma, H.; Mai, K.; Zhang, W.; Ai, Q.; Wang, X.; Bai, N. Immune response of sea cucumber Apostichopus japonicus coelomocytes to several immunostimulants in vitro. Aquaculture 2010, 306, 49–56. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Wan, J.; Li, M.; Yuan, L.; Zha, Y. Dietary Probiotic Bacillus licheniformis TC22 Increases Growth, Immunity, and Disease Resistance, against Vibrio splendidus Infection in Juvenile Sea Cucumbers Apostichopus japonicus. Isr. J. Aquac.-Bamidgeh 2017, 69, 21038. [Google Scholar] [CrossRef]
- Puch-Hau, C.; Sánchez-Tapia, I.; Patiño-Suárez, V.; Olvera-Novoa, M.; Klanian, M.G.; Quintanilla-Mena, M.; Zapata-Pérez, O. Evaluation of two independent protocols for the extraction of DNA and RNA from different tissues of sea cucumber Isostichopus badionotus. MethodsX 2019, 6, 1627–1634. [Google Scholar] [CrossRef]
- Tan, K.; Xu, P.; Lim, L.-S.; Nie, C.; Tan, K.; Peng, Y.; Cai, X.; Yan, X.; Xu, Y.; Kwan, K.Y. Iso-seq and RNA-seq profiling of Fenneropenaeus penicillatus: Unravelling the signaling pathway and genes involved in the ovarian development. Aquac. Rep. 2023, 32, 101731. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Qiuhua, Y.; Xusheng, Z.; Zhen, L.; Ruifang, H.; Tuan, T.N.; Jianshao, W.; Fuyuan, Y.; Hui, G.; Chenhui, Z.; Qian, S.; et al. Transcriptome and Metabolome Analyses of Sea Cucumbers Apostichopus japonicus in Southern China During the Summer Aestivation Period. J. Ocean. Univ. China 2021, 20, 198–212. [Google Scholar]
- Sun, H.; Zhou, Z.; Dong, Y.; Yang, A.; Jiang, B.; Gao, S.; Chen, Z.; Guan, X.; Wang, B.; Wang, X. Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus). Fish Shellfish Immunol. 2013, 34, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.S.; Li, X.Y.; He, Z.P.; Wang, Q.L.; Sun, G.Q.; Fu, Z. Physiological responses of juvenile Apostichopus japonicus (Selenka) to collaborative stress of high temperature and low salinity: Growth and induced heat shock protein gene expression. Acta Oceanol. Sin. 2022, 44, 94–101. [Google Scholar] [CrossRef]
- Sun, Y.X. Effects of Astragalus Polysaccharides on Gene Expression of Lysozyme in Coelmocytes of Sea Cucumber Apostichopus japonicus. Fish. Sci. 2009, 28, 572–574. [Google Scholar] [CrossRef]
- Ma, Y.-X.; Liu, Z.; Yang, Z.; Li, M.; Liu, J.; Song, J. Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2013, 34, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kurtoglu, E.; Ugur, A.; Baltaci, A.K.; Mogolkoc, R.; Undar, L. Activity of neutrophil NADPH oxidase in iron-deficient anemia. Biol. Trace Elem. Res. 2003, 96, 109–115. [Google Scholar] [CrossRef]
- Biller, J.; Takahashi, L. Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Ciências 2018, 90, 3403–3414. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Z.; Leng, X.; Liu, P.; Guo, H.; Jiang, X.; Ou, F.; Jia, T.; Ding, J.; Zhang, W.; et al. Comparison of Immune Indicators Related to Phagocytosis of Five Species of Sea Urchins under Artificial Infection with the Pathogenic Bacterium of Black Mouth Disease. Biology 2024, 13, 495. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Xu, W.; Mai, K.; Zhang, Y.; Liufu, Z. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2012, 32, 750–755. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, L.; Wang, T.; Xue, J.; Liu, G.; Li, X.; You, J.; Li, S.; Xu, Y. Polysaccharides from Astragalus membranaceus promote phagocytosis and superoxide anion (O2−) production by coelomocytes from sea cucumber Apostichopus japonicus in vitro. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Koskenkorva-Frank, T.S.; Weiss, G.; Koppenol, W.H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free. Radic. Biol. Med. 2013, 65, 1174–1194. [Google Scholar] [CrossRef]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Yuan, Y.; Kuang, Y.; Li, X. Iron Metabolism and Immune Regulation. Front. Immunol. 2022, 13, 816282. [Google Scholar] [CrossRef]
- Biller-Takahashi, J.; Takahashi, L.; Saita, M.V.; Gimbo, R.; Urbinati, E. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Braz. J. Biol. 2013, 73, 425–429. [Google Scholar] [CrossRef]
- Di, G.; Zhang, Z.; Ke, C. Phagocytosis and respiratory burst activity of haemocytes from the ivory snail, Babylonia areolata. Fish Shellfish Immunol. 2013, 35, 366–374. [Google Scholar] [CrossRef]
- Homa, J.; Stalmach, M.; Wilczek, G.; Kolaczkowska, E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J. Comp. Physiol. B 2016, 186, 417–430. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Xiao, Y.; Gao, F.; Zhan, F.; Lu, Z.; Huang, Z.; Wei, X.; Su, F.; Shi, F.; et al. The Keap1-Nrf2 signaling pathway regulates antioxidant defenses of Ctenopharyngodon idella induced by bacterial infection. Fish Shellfish Immunol. 2023, 137, 108686. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, L.; Ma, C.; Zhang, X.; Yu, L. Effect of dietary iron (Fe) supplementation on growth performance, hematological parameters and anti-oxidant responses of coho salmon Oncorhynchus kisutch (Walbaum, 1792) post-smolts. Aquac. Rep. 2024, 37, 102203. [Google Scholar] [CrossRef]
- He, K.; Huang, R.; Yang, H.; Liu, Q.; Zhang, Y.; Yan, H.; Hu, Y.; Tahir, R.; Zhao, L.; Yang, S. Dietary nano iron enhanced the intestinal physical barrier, antioxidant capacity and immune function of juvenile largemouth bass (Micropterus salmoides). Water Biol. Secur. 2025, 100472. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, X.; Ding, B.; Sun, Y.; Chang, Y.; Ding, J. Metabolomics analysis for skin ulceration syndrome of Apostichopus japonicus based on UPLC/Q-TOF MS. J. Oceanol. Limnol. 2021, 39, 1559–1569. [Google Scholar] [CrossRef]
- Mallouk, Y.; Vayssier-Taussat, M.; Bonventre, J.; Polla, B. Heat shock protein 70 and ATP as partners in cell homeostasis (Review). Int. J. Mol. Med. 1999, 4, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Hou, D.; Pan, J.; Kang, F.; Wang, Y.; He, J.; Li, C. Heat shock protein 70 (HSP70) regulates innate immunity and intestinal microbial homeostasis against Vibrio parahaemolyticus in shrimp. Aquaculture 2024, 596, 741814. [Google Scholar] [CrossRef]
- Amuneke, K.E.; Elshafey, A.E.; Liu, Y.; Gao, J.; Amankwah, J.F.; Wen, B.; Chen, Z. Impact of Temperature Manipulations on Growth Performance, Body Composition, and Selected Genes of Koi Carp (Cyprinus carpio koi). Fishes 2025, 10, 95. [Google Scholar] [CrossRef]
- Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 2009, 1790, 589–599. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Hong, J.; Tang, A.; Liu, Y.; Xie, N.; Nie, G.; Yan, X.; Liang, M. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci. China Life Sci. 2020, 64, 352–362. [Google Scholar] [CrossRef]
- Awad, E. The role of natural products on the immune status of freshwater fish. Aquac. Int. 2025, 33, 396. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Y.; Liu, W.; Sun, Y.; Jin, L. Expression of Apostichopus japonicus lysozyme in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 2011, 77, 20–25. [Google Scholar] [CrossRef]
- Kochanowski, B.A.; Sherman, A.R. Phagocytosis and lysozyme activity in granulocytes from iron-deficient rat dams and pups. Nutr. Res. 1984, 4, 511–520. [Google Scholar] [CrossRef]
- Wang, H.; Qi, P.; Guo, B.; Li, J.; He, J.-Y.; Wu, C.-W.; Gul, Y. Molecular characterization and expression analysis of a complement component C3 in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2015, 42, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Rauta, P.; Samanta, M.; Dash, H.; Nayak, B.; Das, S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol. Lett. 2014, 158, 14–24. [Google Scholar] [CrossRef]
- Wuertz, S.; Beça, F.; Kreuz, E.; Wanka, K.M.; Azeredo, R.; Machado, M.; Costas, B. Two Probiotic Candidates of the Genus Psychrobacter Modulate the Immune Response and Disease Resistance after Experimental Infection in Turbot (Scophthalmus maximus, Linnaeus 1758). Fishes 2023, 8, 144. [Google Scholar] [CrossRef]
- Bai, H.; Mu, L.; Qiu, L.; Chen, N.; Li, J.; Zeng, Q.; Yin, X.; Ye, J. Complement C3 Regulates Inflammatory Response and Monocyte/Macrophage Phagocytosis of Streptococcus agalactiae in a Teleost Fish. Int. J. Mol. Sci. 2022, 23, 15586. [Google Scholar] [CrossRef]
- Pan, B.P.; Wei, X.; Gao, J.; Luo, K.Y.; Ge, D.Y. The activity parameters, cDNA cloning and mRNA expression of lysozyme in Cyclina sinensis (Bivalvia, Veneridae) responding to the pathogenic bacterium Vibrio anguillarum. Molluscan Res. 2016, 36, 45–53. [Google Scholar] [CrossRef]
- Supungul, P.; Rimphanitchayakit, V.; Aoki, T.; Hirono, I.; Tassanakajon, A. Molecular characterization and expression analysis of a c-type and two novel muramidase-deficient i-type lysozymes from Penaeus monodon. Fish Shellfish Immunol. 2010, 28, 490–498. [Google Scholar] [CrossRef]
- Tian, Y.; Liang, X.-W.; Chang, Y.-Q.; Song, J. Expression of c-type lysozyme gene in sea cucumber (Apostichopus japonicus) is highly regulated and time dependent after salt stress. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 180, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, X.-Q.; Zheng, F.; Sun, H. Histochemical localization and characterization of AKP, ACP, NSE, and POD from cultured Apostichopus japonicus. Chin. J. Oceanol. Limnol. 2009, 27, 550–554. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Wang, C.; Wang, M.; Kang, W.; Qu, L.; Song, J.; Zhao, C.; Wang, Q. Impact of Starfish Predatory Pressure on the Immune and Antioxidant Functions of Sea Cucumber Apostichopus japonicus. Fishes 2024, 9, 337. [Google Scholar] [CrossRef]
- Sun, Y.; Du, X.; Li, S.; Wen, Z.; Li, Y.; Li, X.; Meng, N.; Mi, R.; Ma, S.H.; Sun, A. Dietary Cordyceps militaris protects against Vibrio splendidus infection in sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2015, 45, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Zhang, P.; Liu, J.; Wang, B.; Bu, X.; Wei, Q.; Liu, S.; Li, Y. Effects of dietary supplementation with Bacillus subtilis on immune, antioxidant, and histopathological parameters of Carassius auratus gibelio juveniles exposed to acute saline-alkaline conditions. Aquac. Int. 2022, 30, 2295–2310. [Google Scholar] [CrossRef]
- Mir, G.; Tharani, M.; Hussain, A.; Ahmad, Y.; Rashid, A.; Hussain, G. Variations in acid phosphatase (ACP) & alkaline phosphatase (ALP) activities in liver & kidney of a fresh water fish Labeo rohita expoxed to heavy metal concentrations. Eur. J. Pharm. Med. Res. 2016, 3, 398–401. [Google Scholar]
- Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987–995. [Google Scholar] [CrossRef]
- Filippi, C. Toll-like Receptor Activation in Immunity vs. Tolerance. Front. Immunol. 2015, 6, 146. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′→3′) | NCBI Accession No. | Product Size (bp) |
---|---|---|---|
β-actin [26] | F:TTATGCTCTTCCTCACGCTATCC R:TTGTGGTAAAGGTGTAGCCTCTCTC | EU668024 | 132 |
tlr3 [27] | F:TTGAAGCGTTGGATTTG R:GGACCGATGTTGGAGATA | XM071957083 | 124 |
hsp70 [28] | F:ATGCCTAGAACCAGTAGAGAAAG R:TGTCGTTCGTGATGGTGATT | GH985449 | 116 |
Lyz [29] | F:GTGTCTGATGTGGCTGTGCT R:TTCCCCAGGTATCCCATGAT | EF036468 | 146 |
c3 | F: GGGAAGGCATTCACAAGACA R: CAACCCAGCTTGCTTGAAC | HQ214156 | 232 |
sod | F:CACTTCAGCAGGGGGACATT R:GAGGGCCGGATAGCGATATG | JF769856 | 158 |
ferritin | F: TCCTGGAGCCCACAAGTACT R: TTTCTGGAGCCGTGATGTCC | DQ058411 | 125 |
Group | ST Control | LT Control | ST 0.5% FeSO4 | ST 1% FeSO4 | LT 0.5% FeSO4 | LT 1% FeSO4 |
---|---|---|---|---|---|---|
Survival Rate (%) | 50 ± 10 a | 53 ± 12.5 a | 66.7 ± 4.7 a | 73.3 ± 12.5 a | 80 ± 8.2 a | 90 ± 4.7 b |
Phagocytic Activity (OD540/106 cells) | 0.45 ± 0.23 a | 0.54 ± 0.15 a | 0.41 ± 0.09 a | 0.40± 0.17 a | 0.74 ± 0.03 ab | 1.02 ± 0.06 b |
Respiratory Burst (OD630/106 cells) | 0.42 ± 0.07 ab | 0.49 ± 0.16 ab | 0.11 ± 0.03 c | 0.18 ± 0.07 bc | 0.49 ± 0.13 a | 0.87 ± 0.08 e |
Group | ST Control | LT Control | ST 0.5% FeSO4 | ST 1% FeSO4 | LT 0.5% FeSO4 | LT 1% FeSO4 |
---|---|---|---|---|---|---|
AKP (G/100 mL) | 1.35 ± 0.09 a | 1.30 ± 0.09 a | 2.87 ± 0.39 b | 2.47± 0.36 c | 0.60 ± 0.04 d | 0.60 ± 0.11 d |
ACP (G/100 mL) | 1.39 ± 0.31 a | 1.41 ± 0.15 a | 2.60 ± 0.18 b | 2.31 ± 0.30 b | 0.50 ± 0.30 c | 0.55 ± 0.55 c |
SOD (U/mL) | 82.97 ± 2.12 a | 81.58 ± 1.77 a | 85.27 ± 3.96 a | 91.44 ± 5.65 b | 84.04 ± 2.00 a | 95.22 ± 2.30 c |
LZM (μg/mL) | 1.38 ± 0.16 a | 1.43 ± 0.6 a | 1.68 ± 0.11 b | 1.69 ± 0.05 b | 1.88 ± 0.05 c | 1.44 ± 0.19 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zhao, K.; Li, X.; Cao, L.; Han, L.; Zhao, C.; Ding, J. Dietary Ferrous Sulfate Enhances Resistance to Vibrio splendidus-Induced Skin Ulceration in Apostichopus japonicus via Immune and Antioxidant Modulation. Pathogens 2025, 14, 952. https://doi.org/10.3390/pathogens14090952
Tian Y, Zhao K, Li X, Cao L, Han L, Zhao C, Ding J. Dietary Ferrous Sulfate Enhances Resistance to Vibrio splendidus-Induced Skin Ulceration in Apostichopus japonicus via Immune and Antioxidant Modulation. Pathogens. 2025; 14(9):952. https://doi.org/10.3390/pathogens14090952
Chicago/Turabian StyleTian, Ye, Kaihao Zhao, Xiaonan Li, Lina Cao, Lingshu Han, Chong Zhao, and Jun Ding. 2025. "Dietary Ferrous Sulfate Enhances Resistance to Vibrio splendidus-Induced Skin Ulceration in Apostichopus japonicus via Immune and Antioxidant Modulation" Pathogens 14, no. 9: 952. https://doi.org/10.3390/pathogens14090952
APA StyleTian, Y., Zhao, K., Li, X., Cao, L., Han, L., Zhao, C., & Ding, J. (2025). Dietary Ferrous Sulfate Enhances Resistance to Vibrio splendidus-Induced Skin Ulceration in Apostichopus japonicus via Immune and Antioxidant Modulation. Pathogens, 14(9), 952. https://doi.org/10.3390/pathogens14090952