Distribution and Genotypic Landscape of Tick-Borne Encephalitis Virus in Ticks from Latvia from 2019 to 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Tick Collection
2.2. Molecular Detection
2.3. Genome Sequencing and Phylogenetic Inference
3. Results
3.1. Prevalence of Three Tick Species with TBEV Transmission Potential in Latvia
3.2. Prevalence of TBEV in the Monitored Regions
3.3. Latvian Isolates from Two TBEV Subtypes Cluster in Six Distinct Evolutionary Clades
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TBE | Tick-borne encephalitis |
TBEV | Tick-borne encephalitis virus |
TBEV-EU | Tick-borne encephalitis virus, European subtype |
TBEV-Sib | Tick-borne encephalitis, Siberian subtype |
TBEV-FE | Tick-borne encephalitis, Far-Eastern subtype |
ECDC | European Center for Disease Control |
MEM | Minimal Essential Medium |
ABAM | Antibiotic–Antimycotic solution |
RNA | Ribonucleic acid |
RT-PCR | Reverse transcriptase polymerase chain reaction |
RT-qPCR | Quantitative reverse transcriptase polymerase chain reaction |
MIR | Minimal infection rate |
NCBI | National Center for Biotechnology Information |
GTR | Generalized time-reversible |
MAFFT | Multiple alignment program for amino acid or nucleotide sequences |
I. | Ixodes |
D. | Dermacentor |
Ct value | Cycle threshold value |
References
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; de Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P.; et al. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.V.; Dzhioev, Y.P.; Verkhozina, M.M.; Kozlova, I.V.; Tkachev, S.E.; Plyusnin, A.; Doroshchenko, E.K.; Lisak, O.V.; Zlobin, V.I. Genotyping and characterization of the geographical distribution of tick-borne encephalitis virus variants with a set of molecular probes. J. Med. Virol. 2010, 82, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Shang, G.; Lu, S.; Yang, J.; Xu, J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microbes Infect. 2018, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, O.O.; Dubina, D.O.; Vynograd, N.O.; Gonzalez, J.P. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine. Vector Borne Zoonotic Dis. 2017, 17, 550–557. [Google Scholar] [CrossRef]
- Ponomareva, E.P.; Mikryukova, T.P.; Gori, A.V.; Kartashov, M.Y.; Protopopova, E.V.; Chausov, E.V.; Konovalova, S.N.; Tupota, N.L.; Gheorghita, S.D.; Burlacu, V.I.; et al. Detection of Far-Eastern subtype of tick-borne encephalitis viral RNA in ticks collected in the Republic of Moldova. J. Vector Borne Dis. 2015, 52, 334–336. [Google Scholar]
- Mavtchoutko, V.; Vene, S.; Haglund, M.; Forsgren, M.; Duks, A.; Kalnina, V.; Horling, J.; Lundkvist, A. Characterization of tick-borne encephalitis virus from Latvia. J. Med. Virol. 2000, 60, 216–222. [Google Scholar] [CrossRef]
- Kerlik, J.; Avdicova, M.; Stefkovicova, M.; Tarkovska, V.; Pantikova Valachova, M.; Molcanyi, T.; Mezencev, R. Slovakia reports highest occurrence of alimentary tick-borne encephalitis in Europe: Analysis of tick-borne encephalitis outbreaks in Slovakia during 2007–2016. Travel. Med. Infect. Dis. 2018, 26, 37–42. [Google Scholar] [CrossRef]
- Van Heuverswyn, J.; Hallmaier-Wacker, L.K.; Beaute, J.; Gomes Dias, J.; Haussig, J.M.; Busch, K.; Kerlik, J.; Markowicz, M.; Makela, H.; Nygren, T.M.; et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Euro Surveill. 2023, 28, 2200543. [Google Scholar] [CrossRef]
- Kupca, A.M.; Essbauer, S.; Zoeller, G.; de Mendonca, P.G.; Brey, R.; Rinder, M.; Pfister, K.; Spiegel, M.; Doerrbecker, B.; Pfeffer, M.; et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick. Borne Dis. 2010, 1, 44–51. [Google Scholar] [CrossRef]
- Bestehorn, M.; Weigold, S.; Kern, W.V.; Chitimia-Dobler, L.; Mackenstedt, U.; Dobler, G.; Borde, J.P. Phylogenetics of tick-borne encephalitis virus in endemic foci in the upper Rhine region in France and Germany. PLoS ONE 2018, 13, e0204790. [Google Scholar] [CrossRef]
- Zavadska, D.; Odzelevica, Z.; Karelis, G.; Liepina, L.; Litauniece, Z.A.; Bormane, A.; Lucenko, I.; Perevoscikovs, J.; Bridina, L.; Veide, L.; et al. Tick-borne encephalitis: A 43-year summary of epidemiological and clinical data from Latvia (1973 to 2016). PLoS ONE 2018, 13, e0204844. [Google Scholar] [CrossRef] [PubMed]
- Freimane, Z.; Karelis, G.; Zolovs, M.; Zavadska, D. Tick-borne encephalitis infections without CNS involvement: An observational study in Latvia, 2007–2022. PLoS ONE 2024, 19, e0305120. [Google Scholar] [CrossRef] [PubMed]
- Nosek, J.; Grulich, I. The relationship between the tick-borne encephalitis virus and the ticks and mammals of the Tribec mountain range. Bull. World Health Organ. 1967, 36 (Suppl. S1), 31–47. [Google Scholar]
- Blaskovic, D.; Nosek, J. The ecological approach to the study of tick-borne encephalitis. Prog. Med. Virol. 1972, 14, 275–320. [Google Scholar] [PubMed]
- Randolph, S. Quantitative ecology of ticks as a basis for transmission models of tick-borne pathogens. Vector Borne Zoonotic Dis. 2002, 2, 209–215. [Google Scholar] [CrossRef]
- Knap, N.; Avsic-Zupanc, T. Factors affecting the ecology of tick-borne encephalitis in Slovenia. Epidemiol. Infect. 2015, 143, 2059–2067. [Google Scholar] [CrossRef]
- Bago, J.; Bjedov, L.; Vucelja, M.; Tomljanovic, K.; Cetinic Balent, N.; Zember, S.; Margaletic, J.; Dakovic Rode, O. The Influence of Biogeographic Diversity, Climate and Wildlife on the Incidence of Tick-Borne Encephalitis in Croatia. Viruses 2025, 17, 266. [Google Scholar] [CrossRef]
- Nygren, T.M.; Pilic, A.; Bohmer, M.M.; Wagner-Wiening, C.; Wichmann, O.; Harder, T.; Hellenbrand, W. Tick-Borne Encephalitis Risk Increases with Dog Ownership, Frequent Walks, and Gardening: A Case-Control Study in Germany 2018–2020. Microorganisms 2022, 10, 690. [Google Scholar] [CrossRef]
- Lundkvist, K.; Vene, S.; Golovljova, I.; Mavtchoutko, V.; Forsgren, M.; Kalnina, V.; Plyusnin, A. Characterization of tick-borne encephalitis virus from Latvia: Evidence for co-circulation of three distinct subtypes. J. Med. Virol. 2001, 65, 730–735. [Google Scholar] [CrossRef]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J.; et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasit. Vectors 2020, 13, 351. [Google Scholar] [CrossRef]
- Kazarina, A.; Japina, K.; Keiss, O.; Salmane, I.; Bandere, D.; Capligina, V.; Ranka, R. Detection of tick-borne encephalitis virus in I. ricinus ticks collected from autumn migratory birds in Latvia. Ticks Tick. Borne Dis. 2015, 6, 178–180. [Google Scholar] [CrossRef]
- Krol, N.; Chitimia-Dobler, L.; Dobler, G.; Kiewra, D.; Czulowska, A.; Obiegala, A.; Zajkowska, J.; Juretzek, T.; Pfeffer, M. Identification of New Microfoci and Genetic Characterization of Tick-Borne Encephalitis Virus Isolates from Eastern Germany and Western Poland. Viruses 2024, 16, 637. [Google Scholar] [CrossRef]
- Schwaiger, M.; Cassinotti, P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J. Clin. Virol. 2003, 27, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Chitimia-Dobler, L.; Bestehorn-Willmann, M.; Lindau, A.; Drehmann, M.; Stroppel, G.; Hengge, H.; Mackenstedt, U.; Kaier, K.; Dobler, G.; et al. The Emergence and Dynamics of Tick-Borne Encephalitis Virus in a New Endemic Region in Southern Germany. Microorganisms 2022, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Letcher, B.; Hunt, M.; Iqbal, Z. Gramtools enables multiscale variation analysis with genome graphs. Genome Biology 2021, 22, 259. [Google Scholar] [CrossRef] [PubMed]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar] [CrossRef]
- Li, H.; Birol, I. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Poon, A.F.Y.; Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K.; Hancock, J. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef]
- Romanova, L.; Gmyl, A.P.; Dzhivanian, T.I.; Bakhmutov, D.V.; Lukashev, A.N.; Gmyl, L.V.; Rumyantsev, A.A.; Burenkova, L.A.; Lashkevich, V.A.; Karganova, G.G. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 2007, 362, 75–84. [Google Scholar] [CrossRef]
- Paulauskas, A.; Galdikaitė-Brazienė, E.; Radzijevskaja, J.; Aleksandravičienė, A.; Galdikas, M. Genetic diversity ofIxodes ricinus(Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. J. Vector Ecol. 2016, 41, 244–253. [Google Scholar] [CrossRef]
- Paulauskas, A.; Radzijevskaja, J.; Mardosaitė-Busaitienė, D.; Aleksandravičienė, A.; Galdikas, M.; Krikštolaitis, R. New localities of Dermacentor reticulatus ticks in the Baltic countries. Ticks Tick-Borne Dis. 2015, 6, 630–635. [Google Scholar] [CrossRef]
- Brandenburg, P.J.; Obiegala, A.; Schmuck, H.M.; Dobler, G.; Chitimia-Dobler, L.; Pfeffer, M. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany. Pathogens 2023, 12, 185. [Google Scholar] [CrossRef]
- Jaaskelainen, A.; Tonteri, E.; Pieninkeroinen, I.; Sironen, T.; Voutilainen, L.; Kuusi, M.; Vaheri, A.; Vapalahti, O. Siberian subtype tick-borne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland. Ticks Tick. Borne Dis. 2016, 7, 216–223. [Google Scholar] [CrossRef]
- Kovalev, S.Y.; Mukhacheva, T.A. Clusterons as a tool for monitoring populations of tick-borne encephalitis virus. J. Med. Virol. 2014, 86, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Chitimia-Dobler, L.; Lemhofer, G.; Krol, N.; Bestehorn, M.; Dobler, G.; Pfeffer, M. Repeated isolation of tick-borne encephalitis virus from adult Dermacentor reticulatus ticks in an endemic area in Germany. Parasit. Vectors 2019, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, S.Y.; Mukhacheva, T.A. Tick-borne encephalitis virus subtypes emerged through rapid vector switches rather than gradual evolution. Ecol. Evol. 2014, 4, 4307–4316. [Google Scholar] [CrossRef]
- Wang, S.-S.; Liu, J.-Y.; Wang, B.-Y.; Wang, W.-J.; Cui, X.-M.; Jiang, J.-F.; Sun, Y.; Guo, W.-B.; Pan, Y.-S.; Zhou, Y.-H.; et al. Geographical distribution of Ixodes persulcatus and associated pathogens: Analysis of integrated data from a China field survey and global published data. One Health 2023, 16, 100508. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, G.A.; Paramonov, A.I.; Lisak, O.V.; Kozlova, I.V.; Bazykin, G.A.; Neverov, A.D.; Karan, L.S. The Baikal subtype of tick-borne encephalitis virus is evident of recombination between Siberian and Far-Eastern subtypes. PLoS Negl. Trop. Dis. 2023, 17, e0011141. [Google Scholar] [CrossRef]
- Kovalev, S.Y.; Chernykh, D.N.; Kokorev, V.S.; Snitkovskaya, T.E.; Romanenko, V.V. Origin and distribution of tick-borne encephalitis virus strains of the Siberian subtype in the Middle Urals, the north-west of Russia and the Baltic countries. J. Gen. Virol. 2009, 90, 2884–2892. [Google Scholar] [CrossRef]
- Kovalev, S.Y.; Mukhacheva, T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017, 55, 159–165. [Google Scholar] [CrossRef]
- Tkachev, S.E.; Babkin, I.V.; Chicherina, G.S.; Kozlova, I.V.; Verkhozina, M.M.; Demina, T.V.; Lisak, O.V.; Doroshchenko, E.K.; Dzhioev, Y.P.; Suntsova, O.V.; et al. Genetic diversity and geographical distribution of the Siberian subtype of the tick-borne encephalitis virus. Ticks Tick. Borne Dis. 2020, 11, 101327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitimia-Dobler, L.; Dobler, G.; Lang, D.; Bormane, A.; Ranka, R.; Schaper, S.; Freimane, Z.; Zavadska, D. Distribution and Genotypic Landscape of Tick-Borne Encephalitis Virus in Ticks from Latvia from 2019 to 2023. Pathogens 2025, 14, 950. https://doi.org/10.3390/pathogens14090950
Chitimia-Dobler L, Dobler G, Lang D, Bormane A, Ranka R, Schaper S, Freimane Z, Zavadska D. Distribution and Genotypic Landscape of Tick-Borne Encephalitis Virus in Ticks from Latvia from 2019 to 2023. Pathogens. 2025; 14(9):950. https://doi.org/10.3390/pathogens14090950
Chicago/Turabian StyleChitimia-Dobler, Lidia, Gerhard Dobler, Daniel Lang, Antra Bormane, Renate Ranka, Sabine Schaper, Zane Freimane, and Dace Zavadska. 2025. "Distribution and Genotypic Landscape of Tick-Borne Encephalitis Virus in Ticks from Latvia from 2019 to 2023" Pathogens 14, no. 9: 950. https://doi.org/10.3390/pathogens14090950
APA StyleChitimia-Dobler, L., Dobler, G., Lang, D., Bormane, A., Ranka, R., Schaper, S., Freimane, Z., & Zavadska, D. (2025). Distribution and Genotypic Landscape of Tick-Borne Encephalitis Virus in Ticks from Latvia from 2019 to 2023. Pathogens, 14(9), 950. https://doi.org/10.3390/pathogens14090950