Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository
Abstract
1. Background
2. Methods
2.1. Study Design and Setting
2.2. Data Extraction and Data Management
2.3. Data Analysis
2.4. Ethics
3. Results
3.1. Characteristics of Cases from Countries Where Preexisting Conditions Were Reported
3.2. Comparison of Hospitalisations, ICU, and Mortality by Pre-Existing Condition Status, Overall Analysis, and by Age Group
3.3. Association Between Pre-Existing Conditions and Hospitalization, ICU Admission, and Mortality from COVID-19
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Bohnert, A.S.B.; O’Hare, A.M.; Boyko, E.J.; Maciejewski, M.L.; Smith, V.A.; Bowling, C.B.; Viglianti, E.; Iwashyna, T.J.; Hynes, D.M.; et al. Effectiveness of mRNA COVID-19 Vaccine Boosters Against Infection, Hospitalization, and Death: A Target Trial Emulation in the Omicron (B.1.1.529) Variant Era. Ann. Intern. Med. 2022, 175, 1693–1706. [Google Scholar] [CrossRef]
- Marchand, G.; Masoud, A.T.; Medi, S. Risk of all-cause and cardiac-related mortality after vaccination against COVID-19: A meta-analysis of self-controlled case series studies. Hum. Vaccin. Immunother. 2023, 19, 2230828. [Google Scholar] [CrossRef]
- Bansal, D.; Abdulmajeed, J.; Al-Shamali, M.H.M.A.; Albayat, S.S.A.; Himatt, S.M.; Cyprian, F.S.; Chivese, T.; Mundodan, J.M.A.; Khogali, H.S.; Baaboura, R.; et al. Duration of COVID-19 mRNA vaccine effectiveness against severe disease. Vaccines 2022, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Chivese, T.; Matizanadzo, J.T.; Musa, O.A.H.; Hindy, G.; Furuya-Kanamori, L.; Islam, N.; Al-Shebly, R.; Shalaby, R.; Habibullah, M.; Al-Marwani, T.A.; et al. The prevalence of adaptive immunity to COVID-19 and reinfection after recovery—a comprehensive systematic review and meta-analysis. Pathog. Glob. Health 2022, 116, 269–281. [Google Scholar] [CrossRef]
- Harris, E. WHO Declares End of COVID-19 Global Health Emergency. JAMA 2023, 329, 1817. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Weekly Epidemiological Update on COVID-19—17 August 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---17-august-2021 (accessed on 17 August 2021).
- Lal, A.; Erondu, N.A.; Heymann, D.L.; Gitahi, G.; Yates, R. Fragmented health systems in COVID-19: Rectifying the misalignment between global health security and universal health coverage. Lancet 2021, 397, 61–67. [Google Scholar] [CrossRef]
- Javed, S.; Chattu, V.K. Strengthening the COVID-19 pandemic response, global leadership, and international cooperation through global health diplomacy. Health Promot. Perspect. 2020, 10, 300–305. [Google Scholar] [CrossRef]
- Elnaiem, A.; Mohamed-Ahmed, O.; Zumla, A.; Mecaskey, J.; Charron, N.; Abakar, M.F.; Raji, T.; Bahalim, A.; Manikam, L.; Risk, O. Global and regional governance of One Health and implications for global health security. Lancet 2023, 401, 688–704. [Google Scholar] [CrossRef]
- Cosgriff, C.V.; Ebner, D.K.; Celi, L.A. Data sharing in the era of COVID-19. Lancet Digit. Health 2020, 2, e224. [Google Scholar] [CrossRef]
- AbouGalala, K.; Elsayed, B.; Elmarasi, M.; Kotob, M.; Taha, R.; Abbasher, F.; Amarah, A.; El Hamawi, M.; Albayat, S.S.; Abdulmajeed, J. Association between multimorbidity and COVID-19 mortality in Qatar: A cross-sectional study. Microbiol. Res. 2023, 14, 289–296. [Google Scholar] [CrossRef]
- Liu, A.; Hammond, R.; Donnelly, P.D.; Kaski, J.C.; Coates, A.R. Effective prognostic and clinical risk stratification in COVID-19 using multimodality biomarkers. J. Intern. Med. 2023, 294, 21–46. [Google Scholar] [CrossRef]
- Pipitone, G.; Camici, M.; Granata, G.; Sanfilippo, A.; Di Lorenzo, F.; Buscemi, C.; Ficalora, A.; Spicola, D.; Imburgia, C.; Alongi, I.; et al. Alveolar-Arterial Gradient Is an Early Marker to Predict Severe Pneumonia in COVID-19 Patients. Infect. Dis. Rep. 2022, 14, 470–478. [Google Scholar] [CrossRef]
- Marra, A.; D’Agnano, V.; Pagliaro, R.; Perrotta, F.; Di Fiore, I.; D’Orologio, A.; Scialò, F.; Schiattarella, A.; Bianco, A.; Parrella, R. SpO2/FiO2 Correlates with PaO2/FiO2 (P/F) and Radiological Biomarkers of Severity: A Retrospective Study on COVID-19 Pneumonia Patients. Biomedicines 2025, 13, 1072. [Google Scholar] [CrossRef]
- Mesas, A.E.; Cavero-Redondo, I.; Alvarez-Bueno, C.; Sarria Cabrera, M.A.; Maffei de Andrade, S.; Sequi-Dominguez, I.; Martinez-Vizcaino, V. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS ONE 2020, 15, e0241742. [Google Scholar] [CrossRef]
- Tsankov, B.K.; Allaire, J.M.; Irvine, M.A.; Lopez, A.A.; Sauvé, L.J.; Vallance, B.A.; Jacobson, K. Severe COVID-19 Infection and Pediatric Comorbidities: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2021, 103, 246–256. [Google Scholar] [CrossRef]
- Biswas, M.; Rahaman, S.; Biswas, T.K.; Haque, Z.; Ibrahim, B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology 2020, 64, 1–12. [Google Scholar] [CrossRef]
- Leeb, R.T.; Price, S.; Sliwa, S.; Kimball, A.; Szucs, L.; Caruso, E.; Godfred-Cato, S.; Lozier, M. COVID-19 Trends Among School-Aged Children—United States, 1 March–19 September, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Bellino, S.; Punzo, O.; Rota, M.C.; Del Manso, M.; Urdiales, A.M.; Andrianou, X.; Fabiani, M.; Boros, S.; Vescio, F.; Riccardo, F.; et al. COVID-19 Disease Severity Risk Factors for Pediatric Patients in Italy. Pediatrics 2020, 146, e2020009399. [Google Scholar] [CrossRef] [PubMed]
- Musa, O.A.; Chivese, T.; Bansal, D.; Abdulmajeed, J.; Ameen, O.; Islam, N.; Xu, C.; Sallam, M.A.; Albayat, S.S.; Khogali, H.S.; et al. Prevalence and determinants of symptomatic COVID-19 infection among children and adolescents in Qatar: A cross-sectional analysis of 11 445 individuals. Epidemiol. Infect. 2021, 149, e193. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Gutierrez, B.; Mekaru, S.; Sewalk, K.; Goodwin, L.; Loskill, A.; Cohn, E.L.; Hswen, Y.; Hill, S.C.; Cobo, M.M.; et al. Epidemiological data from the COVID-19 outbreak, real-time case information. Sci. Data 2020, 7, 106. [Google Scholar] [CrossRef]
- Global.health. Global.Health—A Data Science Initiative. 2021. Available online: https://global.health/about/ (accessed on 10 March 2021).
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ. 2001, 79, 373–374. [Google Scholar]
- Ssentongo, P.; Ssentongo, A.E.; Heilbrunn, E.S.; Ba, D.M.; Chinchilli, V.M. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0238215. [Google Scholar] [CrossRef]
- Dorjee, K.; Kim, H.; Bonomo, E.; Dolma, R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS ONE 2020, 15, e0243191. [Google Scholar] [CrossRef]
- Fang, X.; Li, S.; Yu, H.; Wang, P.; Zhang, Y.; Chen, Z.; Li, Y.; Cheng, L.; Li, W.; Jia, H.; et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: A systematic review and meta-analysis. Aging 2020, 12, 12493–12503. [Google Scholar] [CrossRef]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Gibertoni, D.; Reno, C.; Rucci, P.; Fantini, M.P.; Buscaroli, A.; Mosconi, G.; Rigotti, A.; Giudicissi, A.; Mambelli, E.; Righini, M.; et al. COVID-19 incidence and mortality in non-dialysis chronic kidney disease patients. PLoS ONE 2021, 16, e0254525. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, J.; Zhu, Y.; Liu, L.; Liu, Y.; He, Q. Mortality in chronic kidney disease patients with COVID-19: A systematic review and meta-analysis. Int. Urol. Nephrol. 2021, 53, 6. [Google Scholar] [CrossRef]
- Oyelade, T.; Alqahtani, J.; Canciani, G. Prognosis of COVID-19 in Patients with Liver and Kidney Diseases: An Early Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2020, 5, 80. [Google Scholar] [CrossRef]
- Vaughan, L.; Veruttipong, D.; Shaw, J.G.; Levy, N.; Edwards, L.; Winget, M. Relationship of socio-demographics, comorbidities, symptoms and healthcare access with early COVID-19 presentation and disease severity. BMC Infect. Dis. 2021, 21, 40. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Mostert, C.; Hentschker, C.; Voshaar, T.; Malzahn, J.; Schillinger, G.; Klauber, J.; Janssens, U.; Marx, G.; Weber-Carstens, S.; et al. Case characteristics, resource use, and outcomes of 10,021 patients with COVID-19 admitted to 920 German hospitals: An observational study. Lancet Respir. Med. 2020, 8, 853–862. [Google Scholar] [CrossRef]
- Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E.J.; Armistead, I.; Bennett, N.M.; Billing, L.; Como-Sabetti, K.; et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect. Dis. 2021, 72, e206–e214. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.X.; Hackam, D.; Tonelli, M. Systematic review and meta-analysis: When one study is just not enough. Clin. J. Am. Soc. Nephrol. 2008, 3, 253–260. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Sterne, J.A. Uses and abuses of meta-analysis. Clin. Med. 2001, 1, 478–484. [Google Scholar] [CrossRef]
- Jung, R.G.; Di Santo, P.; Clifford, C.; Prosperi-Porta, G.; Skanes, S.; Hung, A.; Parlow, S.; Visintini, S.; Ramirez, F.D.; Simard, T. Methodological quality of COVID-19 clinical research. Nat. Commun. 2021, 12, 943. [Google Scholar] [CrossRef]
- Alexander, P.E.; Debono, V.B.; Mammen, M.J.; Iorio, A.; Aryal, K.; Deng, D.; Brocard, E.; Alhazzani, W. COVID-19 coronavirus research has overall low methodological quality thus far: Case in point for chloroquine/hydroxychloroquine. J. Clin. Epidemiol. 2020, 123, 120–126. [Google Scholar] [CrossRef]
- Bhopal, S.S.; Bagaria, J.; Olabi, B.; Bhopal, R. Children and young people remain at low risk of COVID-19 mortality. Lancet Child Adolesc. Health 2021, 5, e12–e13. [Google Scholar] [CrossRef]
- Bhopal, S.; Bagaria, J.; Olabi, B.; Bhopal, R. COVID-19 deaths in children: Comparison with all-and other causes and trends in incidence of mortality. Public Health 2020, 188, 32. [Google Scholar] [CrossRef]
- Odd, D.; Stoianova, S.; Williams, T.; Sleap, V.; Blair, P.; Fleming, P.; Wolfe, I.; Luyt, K. Child mortality in England during the COVID-19 pandemic. Arch. Dis. Child. 2022, 107, 14–20. [Google Scholar] [CrossRef]
- Moreira, A.; Chorath, K.; Rajasekaran, K.; Burmeister, F.; Ahmed, M.; Moreira, A. Demographic predictors of hospitalization and mortality in US children with COVID-19. Eur. J. Pediatr. 2021, 180, 1659–1663. [Google Scholar] [CrossRef]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine 2020, 26, 100527. [Google Scholar] [CrossRef] [PubMed]
- West, L.J. Defining critical windows in the development of the human immune system. Hum. Exp. Toxicol. 2002, 21, 499–505. [Google Scholar] [CrossRef]
- Mylonakis, S.C.; Mylona, E.K.; Kalligeros, M.; Shehadeh, F.; Chan, P.A.; Mylonakis, E. How comorbidities affect hospitalization from influenza in the pediatric population. Int. J. Environ. Res. Public Health 2022, 19, 2811. [Google Scholar] [CrossRef]
- Baraldo, S.; Contoli, M.; Bonato, M.; Snijders, D.; Biondini, D.; Bazzan, E.; Cosio, M.G.; Barbato, A.; Papi, A.; Saetta, M. Deficient immune response to viral infections in children predicts later asthma persistence. Am. J. Respir. Crit. Care Med. 2018, 197, 673–675. [Google Scholar] [CrossRef]
- Feleszko, W.; Okarska-Napierała, M.; Buddingh, E.P.; Bloomfield, M.; Sediva, A.; Bautista-Rodriguez, C.; Brough, H.A.; Eigenmann, P.A.; Eiwegger, T.; Eljaszewicz, A. Pathogenesis, immunology, and immune-targeted management of the multisystem inflammatory syndrome in children (MIS-C) or pediatric inflammatory multisystem syndrome (PIMS): EAACI position paper. Pediatr. Allergy Immunol. 2023, 34, e13900. [Google Scholar] [CrossRef]
- Prout, A.J.; Talisa, V.B.; Carcillo, J.A.; Mayr, F.B.; Angus, D.C.; Seymour, C.W.; Chang, C.-C.H.; Yende, S. Children with chronic disease bear the highest burden of pediatric sepsis. J. Pediatr. 2018, 199, 194–199.E1. [Google Scholar] [CrossRef]
- Hromić-Jahjefendić, A.; Barh, D.; Ramalho Pinto, C.H.; Gabriel Rodrigues Gomes, L.; Picanco Machado, J.L.; Afolabi, O.O.; Tiwari, S.; Aljabali, A.A.; Tambuwala, M.M.; Serrano-Aroca, A. Associations and disease–disease interactions of COVID-19 with congenital and genetic disorders: A comprehensive review. Viruses 2022, 14, 910. [Google Scholar] [CrossRef] [PubMed]
- Vasichkina, E.; Kofeynikova, O.; Fetisova, S.; Starshinova, A.Y.; Sheyanova, E.; Vershinina, T.; Ryzhkov, A.; Skripnik, A.; Alekseeva, D.; Nechaeva, E. Severe course of COVID-19 and long-COVID-19 in children: Difficulties in diagnosis. Life 2023, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Tran, V.L. The trilogy of SARS-CoV-2 in pediatrics (part 1): Acute COVID-19 in special populations. J. Pediatr. Pharmacol. Ther. 2021, 26, 220–239. [Google Scholar] [CrossRef]
- Vlahou, A.; Hallinan, D.; Apweiler, R.; Argiles, A.; Beige, J.; Benigni, A.; Bischoff, R.; Black, P.C.; Boehm, F.; Céraline, J.; et al. Data Sharing Under the General Data Protection Regulation: Time to Harmonize Law and Research Ethics? Hypertension 2021, 77, 1029–1035. [Google Scholar] [CrossRef]
- Brenas, J.H.; Al-Manir, M.S.; Baker, C.J.O.; Shaban-Nejad, A. A Malaria Analytics Framework to Support Evolution and Interoperability of Global Health Surveillance Systems. IEEE Access 2017, 5, 21605–21619. [Google Scholar] [CrossRef]
- Pisani, E.; Ghataure, A.; Merson, L. Data Sharing in Public Health Emergencies: A Study of Current Policies, Practices and Infrastructure Supporting the Sharing of Data To Prevent and Respond to Epidemic and Pandemic Threats. 2018. Available online: https://wellcome.figshare.com/articles/journal_contribution/Data_sharing_in_public_health_emergencies_A_study_of_current_policies_practices_and_infrastructure_supporting_the_sharing_of_data_to_prevent_and_respond_to_epidemic_and_pandemic_threats/5897608/1?file=10506073 (accessed on 9 September 2025). [CrossRef]
Hospitalization | ICU | Mortality | Total, N = 25,774,885 | ||||
---|---|---|---|---|---|---|---|
Yes, N = 692,001 (2.7%) | No, N = 25,082,884 (97.3%) | Yes, N = 50,195 (0.2%) | No, N = 25,724,690 (99.8%) | Yes, N = 433,394 (1.7%) | No, N = 25,341,491 (98.3%) | ||
Gender, Female, n (%) | 335,165 (2.8) | 11,853,326 (97.3) | 20,646 (0.2) | 12,167,845 (99.8) | 192,446 (1.6) | 11,996,045 (98.4) | 12,188,491 (47.3) |
Gender, Male, n (%) | 354,059 (3.2) | 10,870,336 (96.9) | 29,433 (0.3) | 11,194,962 (99.7) | 240,130 (2.1) | 10,984,265 (97.9) | 11,224,395 (43.5) |
Gender, Others, n (%) | 13 (4.3) | 287 (95.7) | 4 (1.3) | 296 (98.7) | 5 (1.7) | 295 (98.3) | 300 (0.0) |
Gender, Missing, n (%) | 2764 (0.1) | 2,358,935 (99.9) | 112 (0.0) | 2,361,587 (100.0) | 813 (0.0) | 2,360,886 (100.0) | 2,361,699 (9.2) |
Year of diagnosis | |||||||
2020, n (%) | 557,643 (2.9) | 19,021,218 (97.2) | 43,021 (0.2) | 19,535,840 (99.8) | 366,883 (1.9) | 19,211,978 (98.1) | 19,578,861 (76.0) |
2021, n (%) | 134,358 (2.2) | 6,061,666 (97.8) | 7174 (0.1) | 6,188,850 (99.9) | 66,511 (1.1) | 6,129,513 (98.9) | 6,196,024 (24.0) |
Period of diagnosis | |||||||
Jan–Mar 2020 | 27,372 (5.8) | 445,973 (94.2) | 3264 (0.7) | 470,081 (99.3) | 11,807 (2.5) | 461,538 (97.5) | 473,345 (1.8) |
Apr–Jun 2020 | 167,268 (4.7) | 3,399,956 (95.3) | 17,993 (0.5) | 3,549,231 (99.5) | 109,771 (3.1) | 3,457,453 (96.9) | 3,567,224 (13.8) |
Jul–Sep 2020 | 122,355 (2.4) | 4,907,294 (97.6) | 9271 (0.2) | 5,020,378 (99.8) | 92,153 (1.8) | 4,937,496 (98.2) | 5,029,649 (19.5) |
Oct–Dec 2020 | 240,648 (2.3) | 10,267,995 (97.7) | 12,493 (0.1) | 10,496,150 (99.9) | 153,152 (1.5) | 10,355,491 (98.5) | 10,508,643 (40.8) |
Jan–Mar 2021 | 134,358 (2.2) | 6,061,666 (97.8) | 7174 (0.1) | 6,188,850 (99.9) | 66,511 (1.1) | 6,129,513 (98.9) | 6,196,024 (24.0) |
Most considerable case contributions by country | |||||||
USA, n (%) | 587,195 (3.9) | 14,388,175 (96.1) | 43,152 (0.3) | 14,932,218 (99.7) | 259,753 (1.7) | 14,715,617 (98.3) | 14,975,370 (58.1) |
Germany, n (%) | 0 | 2,448,424 (100.0) | 0 | 2,448,424 (100.0) | 65,191 (2.7) | 2,383,233 (97.3) | 2,448,424 (9.5) |
Colombia, n (%) | 17,883 (0.8) | 2,211,189 (99.2) | 2770 (0.1) | 2,226,302 (99.9) | 66,943 (3.0) | 2,162,129 (97.0) | 2,229,072 (8.6) |
Brazil, n (%) | 6286 (0.3) | 1,874,049 (99.7) | 61 (0.0) | 1,880,274 (100.0) | 9016 (0.5) | 1,871,319 (99.5) | 1,880,335 (7.3) |
Overall | Hospitalization | ICU Admission | Mortality |
---|---|---|---|
aOR (95% CI) | aOR (95% CI) | aOR (95% CI) | |
Cardiovascular diseases | 1.7 (1.7–1.7) | 1.4 (1.3–1.5) | 1.7 (1.6–1.7) |
Lung diseases | 1.9 (1.8–1.9) | 1.1 (0.9–1.3) | 1.6 (1.5–1.7) |
Diabetes | 2.2 (2.1–2.2) | 1.7 (1.5–1.8) | 2.0 (1.9–2.0) |
Kidney diseases | 5.5 (5.2–5.7) | 1.4 (1.2–1.7) | 2.7 (2.6–2.9) |
Obesity | 1.7 (1.6–1.7) | 2.2 (2.1–2.4) | 1.9 (1.8–2.0) |
Hypertension | 1.5 (1.4–1.5) | 1.3 (1.2–1.4) | 1.3 (1.3–1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, B.M.S.; Altarawneh, L.; Farooqui, H.H.; Khan, M.N.; Babu, G.R.; Doi, S.A.R.; Chivese, T. Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository. Pathogens 2025, 14, 917. https://doi.org/10.3390/pathogens14090917
Elsayed BMS, Altarawneh L, Farooqui HH, Khan MN, Babu GR, Doi SAR, Chivese T. Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository. Pathogens. 2025; 14(9):917. https://doi.org/10.3390/pathogens14090917
Chicago/Turabian StyleElsayed, Basant M. S., Lina Altarawneh, Habib Hassan Farooqui, Muhammad Naseem Khan, Giridhara Rathnaiah Babu, Suhail A. R. Doi, and Tawanda Chivese. 2025. "Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository" Pathogens 14, no. 9: 917. https://doi.org/10.3390/pathogens14090917
APA StyleElsayed, B. M. S., Altarawneh, L., Farooqui, H. H., Khan, M. N., Babu, G. R., Doi, S. A. R., & Chivese, T. (2025). Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository. Pathogens, 14(9), 917. https://doi.org/10.3390/pathogens14090917