Emerging Challenges in Salmonella Control: The Need for Innovative and Sustainable Disinfection Strategies in Poultry Farming
Abstract
1. Introduction
2. Methodology
3. Emerging Challenges in Salmonella Control
4. Disinfection Effectiveness: Key Factors and New Approaches
4.1. Surface
4.2. Water Quality
4.3. Temperature
5. Next-Gen Solution
5.1. Chemical Methods or Their Combination
5.2. Physical Methods or Their Combination
5.3. Chemical/Physical/Biological Combination
5.4. Biological Methods
5.4.1. Bacteriophages
5.4.2. Essential Oils
5.4.3. Positive Biofilm
6. European Legislation in C&D
7. Biosecurity: The Role of the External Environment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNP | Silver nanoparticles |
AuNP | Gold nanoparticles |
C&D | Cleaning and Disinfection |
CFU | Colony Forming Unit |
EC | European Community |
ECAW | Electrochemically Activated Water |
EO | Essential Oil |
EU | European Union |
FDA | Food and Drug Administration |
G− | Gram-negative |
G+ | Gram-positive |
IoT | Internet of Things |
IR | Infrared radiation |
ISO | International Organisation for Standardisation |
LAB | Latic Acid Bacteria |
LED | Light-emitting diodes |
MIC | Minimum Inhibitory Concentrations |
PAA | Peroxyacetic Acid |
PAW | Plasma-Activated Water |
PFU | Plaque Forming Unit |
PVC | Polyvinyl chloride |
QAC | Quaternary Ammonium Compounds |
SAEW | Slightly Acidic Electrolysed Water |
UV | Ultraviolet Light |
References
- Montoro-Dasi, L.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Vega, S.; Marin, C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023, 11, 1765. [Google Scholar] [CrossRef]
- Gentile, N.; Carrasquer, F.; Marco-Fuertes, A.; Marin, C. Backyard Poultry: Exploring Non-Intensive Production Systems. Poult. Sci. 2024, 103, 103284. [Google Scholar] [CrossRef] [PubMed]
- Sevilla-Navarro, S.; Torres-Boncompte, J.; Garcia-Llorens, J.; Bernabéu-Gimeno, M.; Domingo-Calap, P.; Catalá-Gregori, P. Fighting Salmonella Infantis: Bacteriophage-Driven Cleaning and Disinfection Strategies for Broiler Farms. Front. Microbiol. 2024, 15, 1401479. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union One Health 2023 Zoonoses Report; EFSA: Parma, Italy, 2024; Available online: https://www.efsa.europa.eu/en/efsajournal/pub/9106 (accessed on 2 September 2025).
- Kapoor, R.; Azad, S.; Mukherjee, A.; Dhar, S. Reiter’s Disease in a 8-Year-Old Boy. Indian J. Paediatr. Dermatol. 2018, 19, 154. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Z.; Liu, Z.; Li, D.; Liu, Z.; Dong, X.; Yan, S.; Zhu, L.; Cui, D.; Chen, L.; et al. Biofilm-Forming Ability of Salmonella enterica Strains of Different Serotypes Isolated from Multiple Sources in China. Microb. Pathog. 2023, 182, 106275. [Google Scholar] [CrossRef]
- Jordá, J.; Lorenzo-Rebenaque, L.; Montoro-Dasi, L.; Marco-Fuertes, A.; Vega, S.; Marin, C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals 2023, 13, 3826. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Obe, T.; Kiess, A.S.; Nannapaneni, R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals 2024, 14, 578. [Google Scholar] [CrossRef]
- Cadena, M.; Kelman, T.; Marco, M.L.; Pitesky, M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods 2019, 8, 275. [Google Scholar] [CrossRef]
- Chen, N.; Qin, P.; Liu, Y.; Yang, Y.; Wen, H.; Jia, L.; Li, J.; Zhu, Z. Influence of New Compound Disinfectant From N-Dodecyl-2-(Piridin-1-Ium)Acetamide Chloride on Pathogenic Microorganisms in Poultry Houses. Front. Microbiol. 2021, 12, 735859. [Google Scholar] [CrossRef]
- Obe, T.; Boltz, T.; Kogut, M.; Ricke, S.C.; Brooks, L.A.; Macklin, K.; Peterson, A. Controlling Salmonella: Strategies for Feed, the Farm, and the Processing Plant. Poult. Sci. 2023, 102, 103086. [Google Scholar] [CrossRef]
- Cawthraw, S.; Wales, A.; Guzinski, J.; Trew, J.; Ring, I.; Huby, T.; Hussaini, A.; Petrovska, L.; Martelli, F. Salmonella Infantis Outbreak on Six Broiler Units in Great Britain: Investigation, Epidemiology, and Control. J. Appl. Microbiol. 2025, 136, lxaf040. [Google Scholar] [CrossRef] [PubMed]
- Münster, P.; Pöppel, L.; Antakli, A.; Müller-Doblies, D.; Radko, D.; Kemper, N. The Detection of Salmonella Enteritidis on German Layer Farms after Cleaning and Disinfection. Animals 2023, 13, 2588. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; De Reu, K.; Gabriël, S.; Mattheus, W.; De Zutter, L.; Rasschaert, G. Salmonella Prevalence and Persistence in Industrialized Poultry Slaughterhouses. Poult. Sci. 2021, 100, 100991. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; McDaniel, C.; Kiess, A. Prevalence of Salmonella enterica on Poultry Processing Equipment after Completion of Sanitization Procedures. Poult. Sci. 2020, 99, 4539–4548. [Google Scholar] [CrossRef]
- Castañeda-Gulla, K.; Sattlegger, E.; Mutukumira, A.N. Persistent Contamination of Salmonell, Campylobacter, Escherichia coli, and Staphylococcus aureus at a Broiler Farm in New Zealand. Can. J. Microbiol. 2020, 66, 171–185. [Google Scholar] [CrossRef]
- Luyckx, K.Y.; Van Weyenberg, S.; Dewulf, J.; Herman, L.; Zoons, J.; Vervaet, E.; Heyndrickx, M.; De Reu, K. On-Farm Comparisons of Different Cleaning Protocols in Broiler Houses. Poult. Sci. 2015, 94, 1986–1993. [Google Scholar] [CrossRef]
- Byun, K.-H.; Na, K.W.; Ashrafudoulla, M.; Choi, M.W.; Han, S.H.; Kang, I.; Park, S.H.; Ha, S.-D. Combination Treatment of Peroxyacetic Acid or Lactic Acid with UV-C to Control Salmonella Enteritidis Biofilms on Food Contact Surface and Chicken Skin. Food Microbiol. 2022, 102, 103906. [Google Scholar] [CrossRef]
- Guéneau, V.; Plateau-Gonthier, J.; Arnaud, L.; Piard, J.-C.; Castex, M.; Briandet, R. Positive Biofilms to Guide Surface Microbial Ecology in Livestock Buildings. Biofilm 2022, 4, 100075. [Google Scholar] [CrossRef]
- Aljuwayd, M.; Malli, I.A.; Olson, E.G.; Ricke, S.C.; Rothrock, M.J.; Kwon, Y.M. Disinfectants and One Health Review: The Role of Reactive Oxygen Species in the Bactericidal Activity of Chlorine against Salmonella. One Health 2025, 20, 100989. [Google Scholar] [CrossRef]
- Krüger, G.I.; Urbina, F.; Pardo-Esté, C.; Salinas, V.; Álvarez, J.; Avilés, N.; Oviedo, A.; Kusch, C.; Pavez, V.; Vernal, R.; et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms 2025, 13, 1812. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, K.; Yun, S.; Lee, M.; Song, J.; Chang, B.; Choe, N. Efficacy Evaluation of Commercial Disinfectants by Using Salmonella enterica Serovar Typhimurium as a Test Organism. J. Vet. Sci. 2017, 18, 209. [Google Scholar] [CrossRef]
- Megahed, A.; Aldridge, B.; Lowe, J. Comparative Study on the Efficacy of Sodium Hypochlorite, Aqueous Ozone, and Peracetic Acid in the Elimination of Salmonella from Cattle Manure Contaminated Various Surfaces Supported by Bayesian Analysis. PLoS ONE 2019, 14, e0217428. [Google Scholar] [CrossRef]
- Corcoran, M.; Morris, D.; De Lappe, N.; O’Connor, J.; Lalor, P.; Dockery, P.; Cormican, M. Commonly Used Disinfectants Fail To Eradicate Salmonella enterica Biofilms from Food Contact Surface Materials. Appl. Environ. Microbiol. 2014, 80, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Fredell, D.L.; Cords, B.B.; Givins, B.J. Effect of pH and Water Hardness on the Sanitizing Activity of Five Commercial Lodophors. J. Food Prot. 1985, 48, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Tango, C.N.; Chelliah, R.; Oh, D.-H. Sanitization Efficacy of Slightly Acidic Electrolyzed Water against Pure Cultures of Escherichia coli, Salmonella enterica, Typhimurium, Staphylococcus aureus and Bacillus cereus Spores, in Comparison with Different Water Hardness. Sci. Rep. 2019, 9, 4348. [Google Scholar] [CrossRef] [PubMed]
- Kroft, B.; Leone, C.; Wang, J.; Kataria, J.; Sidhu, G.; Vaddu, S.; Bhumanapalli, S.; Berry, J.; Thippareddi, H.; Singh, M. Influence of Peroxyacetic Acid Concentration, Temperature, pH, and Treatment Time on Antimicrobial Efficacy against Salmonella on Chicken Wings. Poult. Sci. 2024, 103, 103310. [Google Scholar] [CrossRef]
- Mohammed, A.N. An Alternative Approach for Controlling Bacterial Pathogens in Liquid and Solid Poultry Waste Using Calcium Hypochlorite Ca(OCl)2 Disinfectant-Based Silver Nanoparticles. Sci. Rep. 2022, 12, 19733. [Google Scholar] [CrossRef]
- Dias De Emery, B.; Zottis Chitolina, G.; Qadir, M.I.; Quedi Furian, T.; Apellanis Borges, K.; De Souza Moraes, H.L.; Pippi Salle, C.T.; Pinheiro Do Nascimento, V. Antimicrobial and Antibiofilm Activity of Silver Nanoparticles against Salmonella Enteritidis. Braz. J. Microbiol. 2023, 54, 285–292. [Google Scholar] [CrossRef]
- Calle, A.; Fernandez, M.; Montoya, B.; Schmidt, M.; Thompson, J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods 2021, 10, 1459. [Google Scholar] [CrossRef]
- Appel, A.; Zuffo, J.P.; Wolf, J.; Stahlhofer, S.R.; Lopes, P.D.; Correia, B.; Moreira, F.; Millezi, A.F.; Bianchi, I.; Oliveira Júnior, J.M.; et al. Photohydroionisation for Disinfection of Poultry Litter. Br. Poult. Sci. 2021, 62, 695–700. [Google Scholar] [CrossRef]
- Kaewthong, J.; Satienpaisan, W.; Krabuansang, K.; Artsri, J.; Chaisakul, P.; Chiangga, S.; Chattham, N.; Samipak, S. Experiment and Simulation of Heat Treatment for Disinfection in the Chicken Farm Using IR Irradiation. J. Phys. Conf. Ser. 2023, 2431, 012031. [Google Scholar] [CrossRef]
- Reina, M.; Urrutia, A.; Figueroa, J.C.; Riggs, M.R.; Macklin, K.S.; Buhr, R.J.; Price, S.B.; Bourassa, D.V. Application of Pressurized Steam and Forced Hot Air for Cleaning Broiler Transport Container Flooring. Poult. Sci. 2024, 103, 103276. [Google Scholar] [CrossRef]
- Zang, Y.T.; Bing, S.; Li, Y.J.; Shu, D.Q. Application of Slightly Acidic Electrolyzed Water and Ultraviolet Light for Salmonella Enteritidis Decontamination of Cell Suspensions and Surfaces of Artificially Inoculated Plastic Poultry Transport Coops and Other Facility Surfaces. Poult. Sci. 2019, 98, 6445–6451. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, I.; Kobayashi, S.; Tamamura-Andoh, Y.; Arai, N.; Takamatsu, D. Disinfectant Resistance of Salmonella in in Vitro Contaminated Poultry House Models and Investigation of Efficient Disinfection Methods Using These Models. J. Vet. Med. Sci. 2022, 84, 1633–1644. [Google Scholar] [CrossRef]
- Šovljanski, O.; Ranitović, A.; Tomić, A.; Ćetković, N.; Miljković, A.; Saveljić, A.; Cvetković, D. Synergistic Strategies of Heat and Peroxyacetic Acid Disinfection Treatments for Salmonella Control. Pathogens 2023, 12, 1336. [Google Scholar] [CrossRef] [PubMed]
- Měřínská, T.; Walker, M.; Keener, K. Using Plasma-Activated Water for Decontamination of Salmonella spp. on Common Building Surfaces in Poultry Houses. Food Microbiol. 2025, 126, 104673. [Google Scholar] [CrossRef] [PubMed]
- Wilsmann, D.E.; Furian, T.Q.; Carvalho, D.; Chitolina, G.Z.; Lucca, V.; Emery, B.D.; Borges, K.A.; Martins, A.C.; Pontin, K.P.; Salle, C.T.P.; et al. Antibiofilm Activity of Electrochemically Activated Water (ECAW) in the Control of Salmonella Heidelberg Biofilms on Industrial Surfaces. Braz. J. Microbiol. 2023, 54, 2035–2045. [Google Scholar] [CrossRef]
- Kunz Cechinel, A.; Soares, C.E.; Pfleger, S.G.; De Oliveira, L.L.G.A.; Américo De Andrade, E.; Damo Bertoli, C.; De Rolt, C.R.; De Pieri, E.R.; Plentz, P.D.M.; Röning, J. Mobile Robot + IoT: Project of Sustainable Technology for Sanitizing Broiler Poultry Litter. Sensors 2024, 24, 3049. [Google Scholar] [CrossRef]
- Korzeniowski, P.; Śliwka, P.; Kuczkowski, M.; Mišić, D.; Milcarz, A.; Kuźmińska-Bajor, M. Bacteriophage Cocktail Can Effectively Control Salmonella Biofilm in Poultry Housing. Front. Microbiol. 2022, 13, 901770. [Google Scholar] [CrossRef]
- Gvaladze, T.; Lehnherr, H.; Hertwig, S. A Bacteriophage Cocktail Can Efficiently Reduce Five Important Salmonella Serotypes Both on Chicken Skin and Stainless Steel. Front. Microbiol. 2024, 15, 1354696. [Google Scholar] [CrossRef]
- Rogovski, P.; Silva, R.D.; Cadamuro, R.D.; Souza, E.B.D.; Savi, B.P.; Viancelli, A.; Michelon, W.; Tápparo, D.C.; Treichel, H.; Rodríguez-Lazaro, D.; et al. Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. Int. J. Environ. Res. Public Health 2021, 18, 8862. [Google Scholar] [CrossRef]
- Ge, H.; Lin, C.; Xu, Y.; Hu, M.; Xu, Z.; Geng, S.; Jiao, X.; Chen, X. A Phage for the Controlling of Salmonella in Poultry and Reducing Biofilms. Vet. Microbiol. 2022, 269, 109432. [Google Scholar] [CrossRef]
- Galgano, M.; Pellegrini, F.; Fracchiolla, G.; Mrenoshki, D.; Zarea, A.A.K.; Bianco, A.; Del Sambro, L.; Capozzi, L.; Schiavone, A.; Saleh, M.S.; et al. Pilot Study on the Action of Thymus Vulgaris Essential Oil in Treating the Most Common Bacterial Contaminants and Salmonella enterica Subsp. Enterica Serovar Derby in Poultry Litter. Antibiotics 2023, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, T.; Chen, J.; Ye, Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023, 12, 2560. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, M.; Mirzaie, S.; Pirmahalle, F.R.; Yahyaraeyat, R.; Razmyar, J. Effects of Thyme (Thymus Vulgaris) Essential Oil on Bacterial Growth and Expression of Some Virulence Genes in Salmonella enterica Serovar Enteritidis. Vet. Med. Sci. 2024, 10, e70088. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.A.; Yalçin, H.; Polat, Z. Antimicrobial Effects of Laurel Extract, Laurel Essential Oil, Zahter Extract, and Zahter Essential Oil on Chicken Wings Contaminated with Salmonella typhimurium. Vet. Med. Sci. 2024, 10, e1445. [Google Scholar] [CrossRef]
- Haji Seyedtaghiya, M.; Nayeri Fasaei, B.; Peighambari, S.M. Antimicrobial and Antibiofilm Effects of Satureja hortensis Essential Oil against Escherichia coli and Salmonella Isolated from Poultry. Iran. J. Microbiol. 2021, 13, 74–80. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pollera, C.; Pistelli, L.; Mancianti, F. In Vitro Antimicrobial Activity of Selected Essential Oils against Bacteria and Yeasts Isolated from the Genital Tract of Mares. Nat. Prod. Res. 2021, 10, 2648–2653. [Google Scholar] [CrossRef]
- Mariotti, M.; Lombardini, G.; Rizzo, S.; Scarafile, D.; Modesto, M.; Truzzi, E.; Benvenuti, S.; Elmi, A.; Bertocchi, M.; Fiorentini, L.; et al. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022, 10, 822. [Google Scholar] [CrossRef]
- Olawuwo, O.S.; Famuyide, I.M.; McGaw, L.J. Antibacterial and Antibiofilm Activity of Selected Medicinal Plant Leaf Extracts Against Pathogens Implicated in Poultry Diseases. Front. Vet. Sci. 2022, 9, 820304. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Sowińska, J. The Effectiveness of Peppermint and Thyme Essential Oil Mist in Reducing Bacterial Contamination in Broiler Houses. Poult. Sci. 2013, 92, 2834–2843. [Google Scholar] [CrossRef] [PubMed]
- Choroszy-Król, I.; Futoma-Kołoch, B.; Kuźnik, K.; Wojnicz, D.; Tichaczek-Goska, D.; Frej-Mądrzak, M.; Jama-Kmiecik, A.; Sarowska, J. Exposing Salmonella Senftenberg and Escherichia coli Strains Isolated from Poultry Farms to Formaldehyde and Lingonberry Extract at Low Concentrations. Int. J. Mol. Sci. 2023, 24, 14579. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, G.; Rossi, D.; Valadares, E., Jr.; Peres, P.; Braz, R.; Notário, F.; Gomes, M.; Silva, R.; Carrijo, K.; Fonseca, B. Lactic Bacterium and Bacillus sp. Biofilms Can Decrease the Viability of Salmonella gallinarum, Salmonella Heidelberg, Campylobacter jejuni and Methicillin Resistant Staphylococcus aureus on Different Substrates. Braz. J. Poult. Sci. 2021, 23, eRBCA-2020-1408. [Google Scholar] [CrossRef]
- Maes, S.; De Reu, K.; Van Weyenberg, S.; Lories, B.; Heyndrickx, M.; Steenackers, H. Pseudomonas Putida as a Potential Biocontrol Agent against Salmonella Java Biofilm Formation in the Drinking Water System of Broiler Houses. BMC Microbiol. 2020, 20, 373. [Google Scholar] [CrossRef]
- Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.-A.; Mocan, L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl. Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Rose, G.K.; Thakur, B.; Soni, R.; Soni, S.K. Biosynthesis of Silver Nanoparticles Using Nitrate Reductase from Aspergillus terreus N4 and Their Potential Use as a Non-Alcoholic Disinfectant. J. Biotechnol. 2023, 373, 49–62. [Google Scholar] [CrossRef]
- Fadaka, A.; Aluko, O.; Awawu, S.; Theledi, K. Green Synthesis of Gold Nanoparticles Using Pimenta Dioica Leaves Aqueous Extract and Their Application as Photocatalyst, Antioxidant, and Antibacterial Agents. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 78–88. [Google Scholar] [CrossRef]
- Gupta, A.; Pandey, B.C.; Yaseen, M.; Kushwaha, R.; Verma, J.; Manna, P.P.; Manhas, R.K.; Tiwari, I.; Kumari, N. Biofabrication of Gold Nanoparticles (GNPs) Synthesized from Dillenia indica Leaves with Their Anticancer, Antibacterial, and Antioxidant Activities. bioRxiv 2025. [Google Scholar] [CrossRef]
- Amaral, A.L.; Aoki, A.; Andrade, S.A. Could Light Be a Broad-Spectrum Antimicrobial? Evid.-Based Dent. 2024, 25, 192–193. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border under That Directive Text with EEA Relevance; European Parliament and Council: Brussels, Belgium, 2011. [Google Scholar]
- Berrang, M.E.; Meinersmann, R.J.; Cox, N.A.; Adams, E.S. Water Rinse and Flowing Steam to Kill Campylobacter on Broiler Transport Coop Flooring. Food Control 2020, 114, 107214. [Google Scholar] [CrossRef]
- Hao, X.X.; Li, B.M.; Wang, C.Y.; Zhang, Q.; Cao, W. Application of Slightly Acidic Electrolyzed Water for Inactivating Microbes in a Layer Breeding House. Poult. Sci. 2013, 92, 2560–2566. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Cao, W.; Zheng, W.C.; Zhang, Q.; Li, B.M. Reduction of Microbial Contamination on the Surfaces of Layer Houses Using Slightly Acidic Electrolyzed Water. Poult. Sci. 2015, 94, 2838–2848. [Google Scholar] [CrossRef] [PubMed]
- Issabekov, S.S.; Syrym, N.S.; Sambetbayev, A.A.; Alikhanov, K.D.; Yespembetov, B.A. Prospects of Bacteriophage Collections in Disinfectant Applications. Vet. World 2022, 15, 220–231. [Google Scholar] [CrossRef]
- Gildea, L.; Ayariga, J.A.; Robertson, B.K. Bacteriophages as Biocontrol Agents in Livestock Food Production. Microorganisms 2022, 10, 2126. [Google Scholar] [CrossRef]
- Oliveira, G.D.S.; McManus, C.; Sousa, H.A.D.F.; Santos, P.H.G.D.S.; Dos Santos, V.M. A Mini-Review of the Main Effects of Essential Oils from Citrus aurantifolia, Ocimum basilicum, and Allium sativum as Safe Antimicrobial Activity in Poultry. Animals 2024, 14, 382. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Di Vito, M.; Cacaci, M.; Barbanti, L.; Martini, C.; Sanguinetti, M.; Benvenuti, S.; Tosi, G.; Fiorentini, L.; Scozzoli, M.; Bugli, F.; et al. Origanum vulgare Essential Oil vs. a Commercial Mixture of Essential Oils: In Vitro Effectiveness on Salmonella spp. from Poultry and Swine Intensive Livestock. Antibiotics 2020, 9, 763. [Google Scholar] [CrossRef]
- Boskovic, M.; Djordjevic, J.; Ivanovic, J.; Janjic, J.; Zdravkovic, N.; Glisic, M.; Glamoclija, N.; Baltic, B.; Djordjevic, V.; Baltic, M. Inhibition of Salmonella by Thyme Essential Oil and Its Effect on Microbiological and Sensory Properties of Minced Pork Meat Packaged under Vacuum and Modified Atmosphere. Int. J. Food Microbiol. 2017, 258, 58–67. [Google Scholar] [CrossRef]
- Ashraf, S.; Anjum, A.A.; Ahmad, A.; Firyal, S.; Sana, S.; Latif, A.A. In Vitro Activity of Nigella Sativa against Antibiotic Resistant Salmonella enterica. Environ. Toxicol. Pharmacol. 2018, 58, 54–58. [Google Scholar] [CrossRef]
- Nair, D.V.T.; Kollanoor Johny, A. Food Grade Pimenta Leaf Essential Oil Reduces the Attachment of Salmonella enterica Heidelberg (2011 Ground Turkey Outbreak Isolate) on to Turkey Skin. Front. Microbiol. 2017, 8, 2328. [Google Scholar] [CrossRef]
- Luna-Solorza, J.M.; Ayala-Zavala, J.F.; Cruz-Valenzuela, M.R.; González-Aguilar, G.A.; Bernal-Mercado, A.T.; Gutierrez-Pacheco, M.M.; Silva-Espinoza, B.A. Oregano Essential Oil versus Conventional Disinfectants against Salmonella typhimurium and Escherichia coli O157:H7 Biofilms and Damage to Stainless-Steel Surfaces. Pathogens 2023, 12, 1245. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Liu, M.; Tang, X.; Li, Y.; Zhan, Y.; Hao, Z. Antibacterial Activity and Mechanism of Litsea cubeba Essential Oil Against Salmonella typhimurium. Plants 2025, 14, 1343. [Google Scholar] [CrossRef]
- Lallemand Animal Nutrition Triple-action Bedding and Manure Solution: MANURE PRO. Available online: https://www.lallemandanimalnutrition.com/es/spain/productos/manure-pro/ (accessed on 12 February 2025).
- European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH); European Parliament and Council: Brussels, Belgium, 2006; pp. 1–849. [Google Scholar]
- European Parliament and Council. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products; European Parliament and Council: Brussels, Belgium, 2012; pp. 1–167. [Google Scholar]
- EFSA. Autorità Europea per la Sicurezza Alimentare L’EFSA Valuta la Sicurezza Degli Alimenti Irradiati. Available online: https://www.efsa.europa.eu/it/news/efsa-assesses-safety-food-irradiation (accessed on 6 March 2025).
- European Parliament and Council. Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to Risks Arising from Physical Agents (Electromagnetic Fields); European Parliament and Council: Brussels, Belgium, 2013; pp. 1–179. [Google Scholar]
- Faltus, T. The Medicinal Phage—Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses 2024, 16, 443. [Google Scholar] [CrossRef]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; De Antoni, L.; Beccari, T.; et al. Bacteriophages Presence in Nature and Their Role in the Natural Selection of Bacterial Populations. Acta Bio Medica Atenei Parm. 2020, 91, e2020024. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition; European Parliament and Council: Brussels, Belgium, 2003; pp. 29–268. [Google Scholar]
- European Parliament and Council. Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on Flavourings and Certain Food Ingredients with Flavouring Properties for Use in and on Foods and Amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC; European Parliament and Council: Brussels, Belgium, 2008; pp. 34–354. [Google Scholar]
- Wang, J.; Vaddu, S.; Bhumanapalli, S.; Mishra, A.; Applegate, T.; Singh, M.; Thippareddi, H. A Systematic Review and Meta-Analysis of the Sources of Salmonella in Poultry Production (Pre-Harvest) and Their Relative Contributions to the Microbial Risk of Poultry Meat. Poult. Sci. 2023, 102, 102566. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Gosling, R.J.; Martelli, F.; Wintrip, A.; Sayers, A.R.; Wheeler, K.; Davies, R.H. Assessment of Producers’ Response to Salmonella Biosecurity Issues and Uptake of Advice on Laying Hen Farms in England and Wales. Br. Poult. Sci. 2014, 55, 559–568. [Google Scholar] [CrossRef]
- Abdi, R.D.; Mengstie, F.; Beyi, A.F.; Beyene, T.; Waktole, H.; Mammo, B.; Ayana, D.; Abunna, F. Determination of the Sources and Antimicrobial Resistance Patterns of Salmonella Isolated from the Poultry Industry in Southern Ethiopia. BMC Infect. Dis. 2017, 17, 352. [Google Scholar] [CrossRef]
- Marin, C.; Balasch, S.; Vega, S.; Lainez, M. Sources of Salmonella Contamination during Broiler Production in Eastern Spain. Prev. Vet. Med. 2011, 98, 39–45. [Google Scholar] [CrossRef]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Kudirkiene, E.; Akinlabi, O.C.; Bello, M.B.; Olsen, J.E. Prevalence and Risk Factors of Salmonella in Commercial Poultry Farms in Nigeria. PLoS ONE 2020, 15, e0238190. [Google Scholar] [CrossRef]
- Akalu, A.; Tadesse, T.; Alemayehu, H.; Medhin, G.; Woldeyohannes, D.; Eguale, T. Prevalence and Antimicrobial Susceptibility Profile of Salmonella from Poultry Farms and In-Contact Humans and Associated Risk Factors in Addis Ababa, Ethiopia. Int. J. Microbiol. 2024, 2024, 4227460. [Google Scholar] [CrossRef]
- Wales, A.; Breslin, M.; Carter, B.; Sayers, R.; Davies, R. A Longitudinal Study of Environmental Salmonella Contamination in Caged and Free-Range Layer Flocks. Avian Pathol. 2007, 36, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.J.; McLaren, I.M.; Breslin, M.F.; Sayers, R.; Davies, R.H. Assessment of Anti-Salmonella Activity of Boot Dip Samples. Avian Pathol. 2015, 44, 129–134. [Google Scholar] [CrossRef]
- Rose, N.; Beaudeau, F.; Drouin, P.; Toux, J.Y.; Rose, V.; Colin, P. Risk Factors for Salmonella Persistence after Cleansing and Disinfection in French Broiler-Chicken Houses. Prev. Vet. Med. 2000, 44, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Van Meirhaeghe, H.; Caekebeke, N.; Creve, R.; Dufay-Lefort, A.-C.; Rousset, N.; Spaans, A.; Devesa, A.; Tilli, G.; Piccirillo, A.; et al. Development and Use of Biocheck.UGentTM Scoring System to Quantify Biosecurity in Conventional Indoor (Turkey, Duck, Breeder) and Free-Range (Layer and Broiler) Poultry Farms. Prev. Vet. Med. 2024, 230, 106288. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, J.; Simitopoulou, M.; Angastiniotis, K.; Ferrari, P.; Wolthuis-Fillerup, M.; Kefalas, G.; Papasolomontos, S. Development and Implementation of a Risk Assessment Tool for Broiler Farm Biosecurity and a Health Intervention Plan in the Netherlands, Greece, and Cyprus. Poult. Sci. 2023, 102, 102394. [Google Scholar] [CrossRef]
Type of Methods | Methods | Surfaces | Trials | Bacterial Strains | European Standards on Disinfectant Efficacy (EN1656 a/EN14349 b; Reduction log10) | Reference |
---|---|---|---|---|---|---|
Chemical | N-dodecyl-2-(pyridin-1-ium) acetamide chloride with chlorhexidine acetate and glutaraldehyde | Stainless steel and Poultry farm environment | in vitro: Antimicrobial activity assay in vivo: Toxicity tests on mice and chickens; Poultry farms disinfection test | P. aeruginosa, S. aureus, E. coli, B. subtilis, E. hirae, P. vulgaris, C. albicans | 4.7 log10 (UFC/mL) | [11] |
Silver nanoparticles and Ca(OCl)2 | Solid and liquid poultry waste | in vitro: Antimicrobial activity assay | E. coli, Salmonella spp., K. pneumoniae and L. monocytogenes | - * | [29] | |
Silver nanoparticles | Polyethylene | in vitro: Antibiofilm activity assay | S. enteritidis | 3.9 log10 (CFU/cm2) | [30] | |
Physical | UV 1-LED 2 | Stainless steel and high-density polyethylene surfaces | in vitro: Antimicrobial activity assay | Cocktail of five Salmonella strains | 3.4 log10 (CFU/cm2) | [31] |
PHI 3 | Poultry litter | in vitro: Antimicrobial, antiviral, and antifungal activity assay | E. coli, S. aureus, S. enterica serovar Abony | ~0.7 log10 (CFU/g) | [32] | |
IR 4 | Poultry litter (rice husks) | in vitro: Antimicrobial activity assay | S. typhimurium | 4.0 log10 (CFU/g) | [33] | |
Pressurised steam with forced hot air | Fibreglass and plastic floors | in vitro: Antimicrobial activity assay | S. infantis and Enterobacteriaceae | 3.4 log10 (CFU/cm2) | [34] | |
Combination Chemical/Physical/Biological | SAEW 5 with UV 1 | Plastic, stainless steel, glass and tyres | in vitro: Antimicrobial activity assay | S. enteritidis | 4.3 and 6.1 log10 (CFU/cm2) | [35] |
PAA 6 or LAB 7 with UV-C | Stainless steel, silicone rubber and ultra-high molecular weight polyethylene. | in vitro: Antibiofilm activity assay | S. enteritidis | 4.8 log10 (CFU/cm2) | [19] | |
Surfactants and ClO2 with heat | Ceramic and stainless steel | in vitro: Antibiofilm activity assay | S. enterica | - * | [36] | |
PAA 6 with heat | - * | in vitro: Antimicrobial activity assay | S. enteritidis, S. derby, S. typhimurium and S. agona | ~3.25 log10 (CFU/mL) | [37] | |
PAW 8 | Stainless steel, PVC 9, wood and concrete | in vitro: Antimicrobial activity assay | Salmonella spp. | 2.2 log 10 (CFU) | [38] | |
ECAW 10 | Stainless steel and polyethylene | in vitro: Antibiofilm activity assay | S. heidelberg | 2.6 log10 (CFU/cm2) | [39] | |
IoT 11 robot system (combination UV light with ozone) | Simulation of poultry farm surface (including litter) | in vivo: Poultry farms decontamination test | Enterobacteriaceae | 0.2 log10 (CFU/mL) | [40] | |
Biological | Bacteriophages | Poultry Farm environment | in vivo: Antimicrobial activity assay in 10 commercial poultry farms | S. infantis | 2.3 log10 (CFU/mL) | [3] |
Stainless steel and poultry drinkers | in vitro: Antibiofilm activity assay | S. enteritidis | - * | [41] | ||
Stainless steel | in vitro: Antimicrobial activity assay | S. enteritidis, S. typhimurium, S. infantis, S. paratyphi B. and S. indiana | x > 2.0 log10 (CFU/cm2) | [42] | ||
Poultry litter | in vitro: Antimicrobial activity assay | S. enteritidis | 3.0 log10 (CFU/g) | [43] | ||
Metal | in vitro: Antibiofilm activity assay | S. enteritidis | 0.9 log10 (CFU/mL) | [44] | ||
EO 12 | - * | in vitro: Antimicrobial and Antibiofilm activity assay | S. derby; S. enteritidis; S. typhimurium | - * | [45,46,47,48,49,50,51] | |
Plant extraction | - * | in vitro: Antimicrobial and Antibiofilm activity assay | Salmonella spp. | - * | [52] | |
Nebulising peppermint and thyme EO | Poultry Farm environment | in vivo: Antimicrobial activity assay | Enterobacteriaceae | ~0.6 log10 (CFU/mL) | [53] | |
Formaldehyde and blueberry extract | - * | in vitro: Antibiofilm activity assay | S. senftenberg and E. coli | - * | [54] | |
LAB | Polystyrene plates, wood shavings and soil samples | in vitro: Antibiofilm activity assay | S. gallinarum, S. heidelberg, C. jejuni and methicillin resistant S. aureus | x 7.3 log10 (CFU/mL) | [55] | |
Pseudomonas putida | Drinking water | in vitro: Antibiofilm activity assay | S. java | - * | [56] |
Scientific Name | Essential Oil/ Main Component | Salmonella Strains | Trials | MIC/log10 | References |
---|---|---|---|---|---|
Laurus nobilis | Bay leaf extract and oil | S. typhimurium | in vitro: Antimicrobial activity assay | 64 mg/mL and 0.2 µL/mL | [48] |
Satureja hortensis | Thymol | Salmonella spp. | 0.31 a 0.62 μL/mL | [49] | |
Thymus vulgaris L., Origanum vulgare | Thymol and Carvacrol | S. derby | in vitro: Antimicrobial activity assay on poultry litter | x 5.79 log10 (CFU/g) | [45] |
S. enteritidis | in vitro: Antimicrobial activity assay | 128 μg/mL and 256 μg/mL | [46] | ||
S. enteritidis | from 2 to 4 log10 (CFU/mL) | [47] | |||
S. typhimurium, S. infantis | 20 μL/mL | [71] | |||
S. typhimurium | from 0.06 to 0.38 (% v/v) | [51] | |||
Salmonella spp. | from 320 to 640 μg/mL | [72] | |||
Thymbra spicata | Zahter extract and oil | S. typhimurium | in vitro: Antimicrobial activity assay | 0.2 µL/mL | [48] |
Cinnamomum zeylanicum | Cinnamaldehyde | S. enteritidis | in vitro: Antimicrobial activity assay | 128 μg/mL | [46] |
S. enteritidis | 0.06% and 0.31% (% v/v) | [51] | |||
S. typhimurium | from 1.26 to 0.63 mg/mL | [50] | |||
Vaccinium vitis-idaea | Lingonberry extract | S. senftenberg | in vitro: Antimicrobial activity assay | 0.02 mg/mL | [54] |
Syzygium aromaticum | Eugenol | S. typhimurium | in vitro: Antimicrobial activity assay | from 2.637 to 0.164 mg/mL | [50] |
Nigella sativa | Black seed extract and oil | Salmonella enterica | in vitro: Antimicrobial activity assay | ≥562.5 and ≥1000.0 μg/mL | [73] |
Pimenta officinalis | Pimenta leaf | S. heidelberg | in vitro: Antimicrobial activity assay on chicken skin | >2 log10 CFU/in2 | [74] |
Lippia graveolens | Carvacrol and Thymol | S. typhimurium | in vitro: Antimicrobial and Antibiofilm activity assay on stainless steel | 0.250 mg/mL−1 and 0.150 mg/mL−1 | [75] |
Litsea cubeba | Litsea | monophasic S. typhimurium | in vitro: Antimicrobial activity assay | 0.4 mg/mL | [76] |
Allium sativum | Garlic | S. typhimurium | in vitro: Antimicrobial activity assay | - * | [69] |
Guideline | External Challenge Addressed | How It Assists |
---|---|---|
Restrict access to visitors (ensure that visitors are provided with clean clothing and disinfected boots before entry) | Risk of pathogen introduction via humans | Minimises direct Salmonella entry from contaminated footwear/clothing |
Regular C&D of the poultry farm | Risk of Salmonella transmission to new animal batches | Limits the transmission of Salmonella from existing animals to newly introduced batches in the farm. |
Workers must wear clean clothing and ensure their boots are disinfected before entering the farm | Workers’ footwear/clothing contaminated by the external environment | Reduces the transfer of Salmonella into animal housing |
Proper waste management | Waste inside the farm may attract pests and harbour pathogens | Limits the persistence of Salmonella and prevents indirect transmission |
Vehicle access must be restricted and must be C&D before entering the farm. | Vehicles can carry contaminated litter, feed, or equipment | Reduces cross-contamination between farms |
Rodent/insect control | Rodents and insects act as Salmonella reservoirs and vectors | Prevents the spread of bacteria from the surrounding environment into poultry houses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, N.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Montoro-Dasi, L.; Marin, C. Emerging Challenges in Salmonella Control: The Need for Innovative and Sustainable Disinfection Strategies in Poultry Farming. Pathogens 2025, 14, 912. https://doi.org/10.3390/pathogens14090912
Gentile N, Lorenzo-Rebenaque L, Marco-Fuertes A, Montoro-Dasi L, Marin C. Emerging Challenges in Salmonella Control: The Need for Innovative and Sustainable Disinfection Strategies in Poultry Farming. Pathogens. 2025; 14(9):912. https://doi.org/10.3390/pathogens14090912
Chicago/Turabian StyleGentile, Nicla, Laura Lorenzo-Rebenaque, Ana Marco-Fuertes, Laura Montoro-Dasi, and Clara Marin. 2025. "Emerging Challenges in Salmonella Control: The Need for Innovative and Sustainable Disinfection Strategies in Poultry Farming" Pathogens 14, no. 9: 912. https://doi.org/10.3390/pathogens14090912
APA StyleGentile, N., Lorenzo-Rebenaque, L., Marco-Fuertes, A., Montoro-Dasi, L., & Marin, C. (2025). Emerging Challenges in Salmonella Control: The Need for Innovative and Sustainable Disinfection Strategies in Poultry Farming. Pathogens, 14(9), 912. https://doi.org/10.3390/pathogens14090912