Effect of Surface Modification of a Dental Composite on the Adhesion of Streptococcus mitis, Streptococcus mutans, and Candida albicans: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Master Model and Soft Litography
2.3. Saliva Collection and Treatment
2.4. Surface Hydrophobicity and Roughness
2.5. Biological Evaluation
2.6. Monospecies Adhesion Culture Test
2.7. Co-Culture Adhesion Test
2.8. Statistical Analysis
3. Results
3.1. Surface Hydrophobicity and Roughness
3.2. Microbial Adhesion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Acquired Pellicle |
PDMS | Poly (Dimethyl Siloxane) |
CFU | Colony Forming Units |
References
- Bilgili, D.; Dündar, A.; Barutçugil, Ç.; Tayfun, D.; Özyurt, Ö.K. Surface properties and bacterial adhesion of bulk-fill composite resins. J. Dent. 2020, 95, 103317. [Google Scholar] [CrossRef]
- Kozmos, M.; Virant, P.; Rojko, F.; Abram, A.; Rudolf, R.; Raspor, P.; Zore, A.; Bohinc, K. Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces. Molecules 2021, 26, 1152. [Google Scholar] [CrossRef]
- Triana, B.E.G.; Soto, O.D.; Espina, A.M.L.; Bernabeu, A.S. Principales proteínas salivales: Estructura, función y mecanismos de acción. Rev. Habanera Cienc. Médicas 2012, 11, 450–456. [Google Scholar]
- Larsen, T.; Fiehn, N.E. Dental biofilm infections—An update. APMIS 2017, 125, 376–384. [Google Scholar] [CrossRef]
- Skjørland, K.K.; Rykke, M.; Sønju, T. Rate of pellicle formation In Vivo. Acta Odontol Scand. 1995, 53, 358–362. [Google Scholar] [CrossRef]
- Carlén, A.; Börjesson, A.C.; Nikdel, K.; Olsson, J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res. 1998, 32, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, R. Biofilms: Microbial cities of scientific significance. J. Microbiol. Exp. 2014, 1, 84–98. [Google Scholar] [CrossRef]
- Utamaningyas, A.; Pramesti, H.T.; Balafif, F.F. The Streptococcus mutans ability to survive in biofilms and during dental caries formation: A scoping review. J. Syiah Kuala Dent. Soc. 2022, 7, 150–158. [Google Scholar] [CrossRef]
- Whitmore, S.E.; Lamont, R.J. The pathogenic persona of community-associated oral streptococci. Mol. Microbiol. 2011, 81, 305–331. [Google Scholar] [CrossRef]
- Choi, A.; Dong, K.; Williams, E.; Pia, L.; Batagower, J.; Bending, P.; Shin, I.; Peters, D.I.; Kaspar, J.R.; Suen, G. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024, 9, 2. [Google Scholar] [CrossRef]
- Kawasaki, K.; Kambara, M.; Matsumura, H.; Norde, W. A comparison of the adsorption of saliva proteins and some typical proteins onto the surface of hydroxyapatite. Colloids Surfaces B Biointerfaces 2003, 32, 321–334. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Vila, T.; Puthran, T.R.; Sultan, A.S.; Montelongo-Jauregui, D.; Melo, M.A.S.; Jabra-Rizk, M.A. The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: In Vitro and In Vivo studies. Front. Microbiol. 2020, 11, 307. [Google Scholar] [CrossRef]
- Pohl, C.H. Recent advances and opportunities in the study of Candida albicans polymicrobial biofilms. Front. Cell. Infect. Microbiol. 2022, 12, 836379. [Google Scholar] [CrossRef]
- Abrantes, P.M.D.S.; Africa, C.W.J. Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system. J. Microbiol. Methods 2020, 169, 105815. [Google Scholar] [CrossRef]
- Melchora, F.C.; Guadalupe, L.R.; Battellino, L.J. Película adquirida salival: Revisión de la literatura. Acta Odontológica Venez. 2007, 45, 479–486. [Google Scholar]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biotechnol. 2012, 95, 299–311. [Google Scholar] [CrossRef]
- Arango-Santander, S.; Pelaez-Vargas, A.; Freitas, S.C.; García, C. Surface modification by combination of dip-pen nanolithography and soft lithography for reduction of bacterial adhesion. J. Nanotechnol. 2018, 2018, 8624735. [Google Scholar] [CrossRef]
- Arango-Santander, S.; Pelaez-Vargas, A.; Freitas, S.C.; García, C. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Sci. Rep. 2018, 8, 15818. [Google Scholar] [CrossRef]
- Arango-Santander, S.; Gonzalez, C.; Aguilar, A.; Cano, A.; Castro, S.; Sanchez-Garzon, J.; Franco, J. Assessment of Streptococcus mutans adhesion to the surface of biomimetically-modified orthodontic archwires. Coatings 2020, 10, 201. [Google Scholar] [CrossRef]
- Alvarez-Escobar, M.; Freitas, S.C.; Hansford, D.; Monteiro, F.J.; Pelaez-Vargas, A. Soft lithography and minimally human invasive technique for rapid screening of oral biofilm formation on new microfabricated dental material surfaces. Int. J. Dent. 2018, 2018, 4219625. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S.A.S.D.; Kanugala, K.A.N.P.; Weerakkody, N.S. Microbiological quality of raw milk and effect on quality by Implementing good management practices. Procedia Food Sci. 2016, 6, 92–96. [Google Scholar] [CrossRef]
- Su, Q.; Su, J.; Xue, Y.; Zhu, B.; Wang, C. Strategies and applications of antibacterial surface-modified biomaterials. Bioact. Mater. 2025, 53, 114–140. [Google Scholar] [CrossRef]
- Tang, M.; Chen, C.; Zhu, J.; Allcock, H.R.; Siedlecki, C.A.; Xu, L.C. Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioact. Mater. 2021, 6, 447–459. [Google Scholar] [CrossRef]
- Mei, L.; Busscher, H.J.; Van Der Mei, H.C.; Ren, Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent. Mater. 2011, 27, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, G.; Ottobelli, M.; Ionescu, A.C.; Paolone, G.; Gherlone, E.; Ferracane, J.L.; Brambilla, E. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. J. Dent. 2017, 67, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Burgard, N.; Kienitz, M.; Jourdan, C.; Rüttermann, S. The influence of modified experimental dental resin composites on the initial In Situ biofilm—A triple-blinded randomized controlled split-mouth trial. Polymers 2021, 13, 2814. [Google Scholar] [CrossRef] [PubMed]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef]
- Astasov-Frauenhoffer, M.; Glauser, S.; Fischer, J.; Schmidli, F.; Waltimo, T.; Rohr, N. Biofilm formation on restorative materials and resin composite cements. Dent. Mater. 2018, 34, 1702–1709. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003–12020. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from Nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Chawhuaveang, D.D.; Yu, O.Y.; Yin, I.X.; Lam, W.Y.; Mei, M.L.; Chu, C.H. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci. 2021, 16, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.H.; Krasieva, T.B.; Tang, S.; Ahn, Y.-C.; Kim, C.S.; Vu, D.; Chen, Z.; Wilder-Smith, P.B.B. Optical approach to the salivary pellicle. J. Biomed. Opt. 2009, 14, 44001e6. [Google Scholar] [CrossRef]
- Hannig, M.; Herzog, S.; Willigeroth, S.; Zimehl, R. Atomic force microscopy study of salivary pellicles formed on enamel and glass In Vivo. Colloid Polym. Sci. 2001, 279, 479–483. [Google Scholar] [CrossRef]
- Reise, M.; Kranz, S.; Heyder, M.; Beck, J.; Roth, C.; Guellmar, A.; von Eggeling, F.; Schubert, U.; Löffler, B.; Sigusch, B. Salivary pellicle formed on dental composites evaluated by mass spectrometry—An in situ study. Molecules 2023, 28, 6804. [Google Scholar] [CrossRef]
- Hu, H.; Burrow, M.F.; Leung, W.K. Proteomic profile of In Situ acquired pellicle on tooth and restorative material surfaces. J. Dent. 2023, 129, 104389. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, C.; Magi, G.; Orsini, G.; Putignano, A.; Facinelli, B. Antibiofilm activity of zinc-carbonate hydroxyapatite nanocrystals against Streptococcus mutans and mitis group streptococci. Curr. Microbiol. 2013, 6, 679–681. [Google Scholar] [CrossRef]
- Kindblom, C.; Davies, J.R.; Herzberg, M.C.; Svensäter, G.; Wickström, C. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. Mol. Oral Microbiol. 2012, 2, 362–372. [Google Scholar] [CrossRef]
- Kanaguchi, N.; Narisawa, N.; Ito, T.; Kinoshita, Y.; Kusumoto, Y.; Shinozuka, O.; Senpuku, H. Effects of salivary protein flow and indigenous microorganisms on initial colonization of Candida albicans in an in vivo model. BMC Oral Health 2012, 31, 36. [Google Scholar] [CrossRef]
- Ponde, N.O.; Lortal, L.; Ramage, G.; Naglik, J.R.; Richardson, J.P. Candida albicans biofilms and polymicrobial interactions. Crit. Rev. Microbiol. 2021, 47, 91–111. [Google Scholar] [CrossRef]
- Souza, J.G.S.; Bertolini, M.; Thompson, A.; Barão, V.A.R.; Dongari-Bagtzoglou, A. Biofilm interactions of Candida albicans and mitis group streptococci in a titanium-mucosal interface model. Appl. Environ. Microbiol. 2020, 86, e02950-19. [Google Scholar] [CrossRef]
- Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98. [Google Scholar] [CrossRef]
- Bedoya-Correa, C.M.; Betancur-Giraldo, S.; Franco, J.; Arango-Santander, S. Probiotic effect of Streptococcus dentisani on oral pathogens: An In Vitro study. Pathogens 2024, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- AlBin-Ameer, M.A.; Alsrheed, M.Y.; Aldukhi, I.A.; Matin, A.; Khan, S.Q.; Abualsaud, R.; Gad, M.M. Effect of protective coating on surface properties and Candida albicans adhesion to denture base materials. J. Prosthodont. 2020, 29, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Thanh Nguyen, H.; Zhang, R.; Inokawa, N.; Oura, T.; Chen, X.; Iwatani, S.; Niimi, K.; Niimi, M.; Holmes, A.R.; Cannon, R.D.; et al. Candida albicans Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. J. Oral Microbiol. 2021, 12, 1879497. [Google Scholar] [CrossRef]
- Gunaratnam, G.; Dudek, J.; Jung, P.; Becker, S.L.; Jacobs, K.; Bischoff, M.; Hannig, M. Quantification of the adhesion strength of Candida albicans to tooth enamel. Microorganisms 2021, 9, 2213. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.M.; Jenkinson, H.F.; Cannon, R.D. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 2000, 146, 41–48. [Google Scholar] [CrossRef]
- Johansson, I.; Bratt, P.; Hay, D.I.; Schluckebier, S.; Strömberg, N. Adhesion of Candida albicans, but not Candida krusei, to salivary statherin and mimicking host molecules. Oral Microbiol. Immunol. 2000, 15, 112–118. [Google Scholar] [CrossRef]
- Uyen, H.M.; van der Mei, H.C.; Weerkamp, A.H.; Busscher, H.J. Comparison between the adhesion to solid substrata of Streptococcus mitis and that of polystyrene particles. Appl. Environ. Microbiol. 1988, 54, 837–838. [Google Scholar] [CrossRef]
- Ionescu, A.; Brambilla, E.; Wastl, D.S.; Giessibl, F.J.; Cazzaniga, G.; Schneider-Feyrer, S.; Hahnel, S. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites. J. Mater. Sci. Mater. Med. 2015, 26, 5372. [Google Scholar] [CrossRef]
- Arango-Santander, S.; Serna, L.; Sanchez-Garzon, J.; Franco, J. Evaluation of Streptococcus mutans adhesion to stainless steel surfaces modified using different topographies following a biomimetic approach. Coatings 2021, 11, 829. [Google Scholar] [CrossRef]
- Chowdhury, D.; Mazumdar, P.; Desai, P.; Datta, P. Comparative evaluation of surface roughness and color stability of nanohybrid composite resin after periodic exposure to tea, coffee, and Coca-cola—An in vitro profilometric and image analysis study. J. Conserv. Dent. 2020, 23, 395–401. [Google Scholar] [CrossRef]
- Badole, G.P.; Shenoi, P.R.; Bengal, S. Comparative Evaluation of Surface Roughness and Microhardness of Bulk-fill Composite Placed in Artificial Saliva at Three Different pH. World J. Dent. 2023, 14, 331–335. [Google Scholar] [CrossRef]
- Da Silva, M.A.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Silva-Júnior, J.G.; Tonholo, J. Effect of alcoholic beverages on surface roughness and microhardness of dental composites. Dent. Mater. J. 2016, 35, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Craciun, A.; Prodan, D.; Constantiniuc, M.; Ispas, A.; Filip, M.R.; Moldovan, M.; Badea, M.; Petean, I.; Crisan, M. Stability of dental composites in water and saliva. Mater. Plast. 2020, 57, 57–66. [Google Scholar] [CrossRef]
- Dong, Z.; Chang, J.; Joiner, A.; Sun, Y. Tricalcium silicate induces enamel remineralization in human saliva. J. Dent. Sci. 2013, 8, 440–443. [Google Scholar] [CrossRef]
- Mu, M.; Liu, S.; DeFlorio, W.; Hao, L.; Wang, X.; Solis-Salazar, K.; Taylor, M.; Castillo, A.; Cisneros-Zevallos, L.; Oh, J.K.; et al. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion. Langmuir 2023, 39, 5426–5439. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.; Schumacher, J.F.; Sampson, E.M.; Burne, R.A.; Antonelli, P.J.; Brennan, A.B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2007, 2, 89–94. [Google Scholar] [CrossRef]
Strains | Categories | CFU/Disc Mean ± SD | Minimum–Maximum | p Value |
---|---|---|---|---|
S. mutans | L-SSal c | 2.08 × 106 ± 1.25 × 106 | 6.00 × 105–4.50 × 106 | <0.001 |
L-Sal b | 6.25 × 106 ± 3.44 × 106 | 1.00 × 106–1.10 × 107 | ||
P-SSal a | 1.01 × 106 ± 8.40 × 105 | 7.00 × 104–2.10 × 106 | ||
P-Sal a | 6.87 × 105 ± 6.28 × 105 | 5.00 × 104–1.60 × 106 | ||
S. mitis | L-SSal a | 6.20 × 106 ± 5.51 × 106 | 1.60 × 106–1.80 × 107 | <0.001 |
L-Sal b | 2.17 × 107 ± 1.22 × 107 | 3.00 × 106–4.10 × 107 | ||
P-SSal c | 5.53 × 106 ± 4.96 × 106 | 9.00 × 105–1.30 × 107 | ||
P-Sal a | 6.30 × 106 ± 5.58 × 106 | 1.00 × 106–1.80 × 107 | ||
C. albicans | L-SSal | 8.50 × 105 ± 3.02 × 105 | 4.00 × 105–1.20 × 106 | 0.100 |
L-Sal | 1.10 × 106 ± 7.70 × 105 | 3.00 × 105–2.60 × 106 | ||
P-SSal | 4.37 × 105 ± 2.32 × 105 | 2.00× 105–9.00 × 105 | ||
P-Sal | 8.12 × 105 ± 5.51 × 105 | 1.00 × 105–1.90 × 106 |
Strains | Categories | CFU/Disc Median (IQR) | Minimum–Maximum | p Value (Kruskal–Wallis H) |
---|---|---|---|---|
S. mutans | L-SSal a | 1.0 × 102 (1.0 × 102–4.00 × 102) | 2.00 × 101–1.00 × 103 | <0.001 |
L-Sal b | 1.15 × 103 (1.00 × 103–3.50 × 103) | 8.00 × 102–7.00 × 103 | ||
P-SSal a | 1.00 × 102 (3.50 × 101–2.00 × 102) | 1.00 × 101–6.00 × 102 | ||
P-Sal a | 1.25 × 102 (3.50 × 101–6.50 × 102) | 2.00 × 101–1.20 × 103 | ||
S. mitis | L-SSal | 1.24 × 105 (1.70 × 104–2.45 × 105) | 3.00 × 103–3.00 × 105 | 0.661 |
L-Sal | 8.00 × 104 (1.50 × 103–5.80 × 105) | 1.20 × 103–7.00 × 105 | ||
P-SSal | 2.80 × 104 (1.35 × 104–4.85 × 104) | 9.00 × 103–1.50 × 105 | ||
P-Sal | 9.50 × 104 (1.15 × 104–1.65 × 105) | 1.10 × 103–3.40 × 105 | ||
C. albicans | L-SSal a | 1.00 × 102 (4.5 × 101–2.00 × 102) | 3.00 × 101–2.00 × 102 | <0.001 |
L-Sal a | 2.00 × 102 (1.00 × 102–1.0 × 103) | 1.00 × 102–2.00 × 103 | ||
P-SSal b | 1.50 × 101 (1.00 × 101–3.50 × 101) | 1.00 × 101–2.00 × 102 | ||
P-Sal b | 1.00 × 101 (1.00 × 101–2.50 × 101) | 1.00 × 101–4.00 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arango-Santander, S.; Bedoya-Correa, C.M.; Soto, C.; Bustamante, S.; Franco, J. Effect of Surface Modification of a Dental Composite on the Adhesion of Streptococcus mitis, Streptococcus mutans, and Candida albicans: An In Vitro Study. Pathogens 2025, 14, 909. https://doi.org/10.3390/pathogens14090909
Arango-Santander S, Bedoya-Correa CM, Soto C, Bustamante S, Franco J. Effect of Surface Modification of a Dental Composite on the Adhesion of Streptococcus mitis, Streptococcus mutans, and Candida albicans: An In Vitro Study. Pathogens. 2025; 14(9):909. https://doi.org/10.3390/pathogens14090909
Chicago/Turabian StyleArango-Santander, Santiago, Claudia María Bedoya-Correa, Camila Soto, Santiago Bustamante, and John Franco. 2025. "Effect of Surface Modification of a Dental Composite on the Adhesion of Streptococcus mitis, Streptococcus mutans, and Candida albicans: An In Vitro Study" Pathogens 14, no. 9: 909. https://doi.org/10.3390/pathogens14090909
APA StyleArango-Santander, S., Bedoya-Correa, C. M., Soto, C., Bustamante, S., & Franco, J. (2025). Effect of Surface Modification of a Dental Composite on the Adhesion of Streptococcus mitis, Streptococcus mutans, and Candida albicans: An In Vitro Study. Pathogens, 14(9), 909. https://doi.org/10.3390/pathogens14090909