Attenuated SARS-CoV-2-Specific T Cell Responses Are Associated with T Follicular Helper Cell Expansion in Treatment-Naive Chronic Lymphocytic Leukemia Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Sample Collection
2.2. Quantification of Total and SARS-CoV-2-Specific Serum Immunoglobulins
2.3. Assessment of Functional T Cell Responses to SARS-CoV-2
2.4. Peripheral Blood Mononuclear Cell Isolation
2.5. Flow Cytometry
2.6. Statistical Analysis
3. Results
3.1. Preserved SARS-CoV-2-Specific Antibody Responses in CLL Patients Despite Reduced Total Immunoglobulin Levels
3.2. Evidence of Functional T Cell Immunity to SARS-CoV-2 in CLL Patients
3.3. Tfh and Tfr Cells Are Expanded in CLL Patients
3.4. Reduced SARS-CoV-2-Specific T Cell Response Is Associated with Tfh Cell Expansion in CLL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
β2M | Beta 2 microglobulin |
BCL6 | B cell lymphoma 6 |
CBC | Complete blood count |
CD | Cluster of differentiation |
CLL | Chronic lymphocytic leukemia |
COVID-19 | Coronavirus disease 2019 |
CXCR5 | C-X-C chemokine receptor type 5 |
ELISA | Enzyme-linked immunosorbent assay |
FcR | Fc receptor |
FOXP3 | Forkhead box P3 |
GC | Germinal center |
HCs | Healthy controls |
HGB | Hemoglobin |
Ig | Immunoglobulin |
IGRA | Interferon gamma release assay |
IFN-γ | Interferon gamma |
NCP | Nucleocapsid protein |
PBMC | Peripheral blood mononuclear cells |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
Tfh | T follicular helper |
Tfr | T follicular regulatory |
Treg | Regulatory T cell |
WBCs | White blood cells |
References
- Hallek, M.; Shanafelt, T.D.; Eichhorst, B. Chronic lymphocytic leukaemia. Lancet 2018, 391, 1524–1537. [Google Scholar] [CrossRef] [PubMed]
- Forconi, F.; Moss, P. Perturbation of the normal immune system in patients with CLL. Blood 2015, 126, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Rawstron, A.C.; Kreuzer, K.A.; Soosapilla, A.; Spacek, M.; Stehlikova, O.; Gambell, P.; McIver-Brown, N.; Villamor, N.; Psarra, K.; Arroz, M.; et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom. B Clin. Cytom. 2018, 94, 121–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed]
- Morrison, V.A. Infectious complications of chronic lymphocytic leukaemia: Pathogenesis, spectrum of infection, preventive approaches. Best. Pract. Res. Clin. Haematol. 2010, 23, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Perri, R.T.; Kay, N.E. Abnormal T cell function in early-stage chronic lymphocytic leukemia (CLL) patients. Am. J. Hematol. 1986, 22, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, A.D.; Hamblin, T.J. The immunodeficiency of chronic lymphocytic leukaemia. Br. Med. Bull. 2008, 87, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Itala, M.; Helenius, H.; Nikoskelainen, J.; Remes, K. Infections and serum IgG levels in patients with chronic lymphocytic leukemia. Eur. J. Haematol. 1992, 48, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Scarfo, L.; Chatzikonstantinou, T.; Rigolin, G.M.; Quaresmini, G.; Motta, M.; Vitale, C.; Garcia-Marco, J.A.; Hernández-Rivas, J.Á.; Mirás, F.; Baile, M. COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: A joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia 2020, 34, 2354–2363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinana, J.L.; Martino, R.; Garcia-Garcia, I.; Parody, R.; Morales, M.D.; Benzo, G.; Gomez-Catalan, I.; Coll, R.; De la Fuente, I.; Luna, A.; et al. Risk factors and outcome of COVID-19 in patients with hematological malignancies. Exp. Hematol. Oncol. 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Cai, C.; Wullimann, D.; Niessl, J.; Rivera-Ballesteros, O.; Chen, P.; Lange, J.; Cuapio, A.; Blennow, O.; Hansson, L.; et al. Immunodeficiency syndromes differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination. Immunity 2022, 55, 1732–1746.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herishanu, Y.; Avivi, I.; Levi, S.; Shefer, G.; Bronstein, Y.; Moshiashvili, M.M. Six-month antibody persistence after BNT162b2 mRNA COVID-19 vaccination in patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 148–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roeker, L.E.; Knorr, D.A.; Pessin, M.S.; Ramanathan, L.V.; Thompson, M.C.; Leslie, L.A.; Zelenetz, A.D.; Mato, A.R. Anti-SARS-CoV-2 antibody response in patients with chronic lymphocytic leukemia. Leukemia 2020, 34, 3047–3049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zaleska, J.; Kwasnik, P.; Paziewska, M.; Purkot, J.; Szabelak, A.; Jurek, M.; Masny, N.; Dziatkiewicz, I.; Pronobis-Szczylik, B.; Piebiak, A.; et al. Response to anti-SARS-CoV-2 mRNA vaccines in multiple myeloma and chronic lymphocytic leukemia patients. Int. J. Cancer 2023, 152, 705–712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campanella, A.; Capasso, A.; Heltai, S.; Taccetti, C.; Albi, E.; Herishanu, Y.; Haggenburg, S.; Chatzikonstantinou, T.; Doubek, M.; Kättström, M.; et al. Additional booster doses in patients with chronic lymphocytic leukemia induce humoral and cellular immune responses to SARS-CoV-2 similar to natural infection regardless ongoing treatments: A study by ERIC, the European Research Initiative on CLL. Am. J. Hematol. 2024, 99, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Mesin, L.; Ersching, J.; Victora, G.D. Germinal Center B Cell Dynamics. Immunity 2016, 45, 471–482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutierrez-Melo, N.; Baumjohann, D. T follicular helper cells in cancer. Trends Cancer. 2023, 9, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Linterman, M.A.; Pierson, W.; Lee, S.K.; Kallies, A.; Kawamoto, S.; Rayner, T.F.; Srivastava, M.; Divekar, D.P.; Beaton, L.; Hogan, J.J.; et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 2011, 17, 975–982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parikh, S.A.; Leis, J.F.; Chaffee, K.G.; Call, T.G.; Hanson, C.A.; Ding, W.; Chanan-Khan, A.A.; Bowen, D.; Conte, M.; Schwager, S.; et al. Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia: Natural history, clinical correlates, and outcomes. Cancer 2015, 121, 2883–2891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freeman, J.A.; Crassini, K.R.; Best, O.G.; Forsyth, C.J.; Mackinlay, N.J.; Han, P.; Stevenson, W.; Mulligan, S.P. Immunoglobulin G subclass deficiency and infection risk in 150 patients with chronic lymphocytic leukemia. Leuk. Lymphoma 2013, 54, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Criado, I.; Blanco, E.; Rodriguez-Caballero, A.; Alcoceba, M.; Contreras, T.; Gutierrez, M.L.; Romero, A.; Fernández-Navarro, P.; González, M.; Solano, F.; et al. Residual normal B-cell profiles in monoclonal B-cell lymphocytosis versus chronic lymphocytic leukemia. Leukemia 2018, 32, 2701–2705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahearne, M.J.; Willimott, S.; Pinon, L.; Kennedy, D.B.; Miall, F.; Dyer, M.J.; Wagner, S.D. Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br. J. Haematol. 2013, 162, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Cha, Z.; Zang, Y.; Guo, H.; Rechlic, J.R.; Olasnova, L.M.; Gu, H.; Tu, X.; Song, H.; Qian, B. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 2013, 34, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Pascutti, M.F.; Jak, M.; Tromp, J.M.; Derks, I.A.; Remmerswaal, E.B.; Thijssen, R.; van Attekum, M.H.; van Bochove, G.G.; Luijks, D.M.; Pals, S.T.; et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 2013, 122, 3010–3019. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fajardo-Despaigne, J.E.; Zhang, C.; Neppalli, V.; Banerji, V.; Johnston, J.B.; Gibson, S.B.; Marshall AJAltered, T. Altered T Follicular Helper Cell Subsets and Function in Chronic Lymphocytic Leukemia. Front. Oncol. 2021, 11, 674492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Weerdt, I.; Hofland, T.; de Boer, R.; Dobber, J.A.; Dubois, J.; van Nieuwenhuize, D.; Mobasher, M.; de Boer, F.; Hoogendoorn, M.; Velders, G.A. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019, 3, 2642–2652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le Saos-Patrinos, C.; Loizon, S.; Zouine, A.; Turpin, D.; Dilhuydy, M.S.; Blanco, P.; Sisirak, V.; Forcade, E.; Duluc, D. Elevated levels of circulatory follicular T helper cells in chronic lymphocytic leukemia contribute to B cell expansion. J. Leukoc. Biol. 2023, 113, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; World Health Organization; International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised Fourth Edition; International Agency for Research on Cancer: Lyon, France, 2017; 585p, ISBN 978-92-832-4494-3. [Google Scholar]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.; Schmitt, N.; Bentebibel, S.E.; Ranganathan, R.; Bourdery, L.; Zurawski, G.; Foucat, E.; Dullaers, M.; Oh, S.; Sabzghabaei, N.; et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011, 34, 108–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bange, E.M.; Han, N.A.; Wileyto, P.; Kim, J.Y.; Gouma, S.; Robinson, J.; Greenplate, A.R.; Hwee, M.A.; Porterfield, F.; Owoyemi, O.; et al. CD8(+) T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med. 2021, 27, 1280–1289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, Y.; Freeman, J.A.; Holland, J.; Naidu, K.; Solterbeck, A.; Van Bilsen, N.; Downe, P.; Kerridge, I.; Wallman, L.; Akerman, A.; et al. Multiple COVID-19 vaccine doses in CLL and MBL improve immune responses with progressive and high seroconversion. Blood 2022, 140, 2709–2721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roeker, L.E.; Knorr, D.A.; Thompson, M.C.; Nivar, M.; Lebowitz, S.; Peters, N.; Deonarine Jr, I.; Momotaj, S.; Sharan, S.; Chanlatte, V.; et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia 2021, 35, 2703–2705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moga, E.; Lynton-Pons, E.; Domingo, P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 904686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sattler, A.; Angermair, S.; Stockmann, H.; Heim, K.M.; Khadzhynov, D.; Treskatsch, S.; Halleck, F.; Kreis, M.E.; Kotsch, K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J. Clin. Investig. 2020, 130, 6477–6489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Painter, M.M.; Mathew, D.; Goel, R.R.; Apostolidis, S.A.; Pattekar, A.; Kuthuru, O.; Baxter, A.E.; Herati, R.S.; Oldridge, D.A.; Gouma, S.; et al. Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 2021, 54, 2133–2142.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables 1 | Healthy Controls (n = 13) | CLL Patients (n = 38) | p Value 2 |
---|---|---|---|
Sex (n, %) | >0.9999 | ||
Male | 8 (61.5%) | 24 (63.2%) | |
Female | 5 (38.5%) | 14 (36.8%) | |
Age (years) | 66 (64–69.5) | 70 (61.8–76.3) | 0.3251 |
Binet stage (n, %) | |||
A | - | 29 (76.3%) | |
B | - | 9 (23.7%) | |
WBC (×109/L) | 5.70 (5.10–6.40) | 17.55 (13.68–22.25) | <0.0001 |
Lymphocytes (×109/L) | 1.90 (1.45–2.05) | 11.40 (8.50–17.78) | <0.0001 |
B cells (×109/L) | 0.10 (0.06–0.13) | 7.04 (4.42–13.24) | <0.0001 |
Platelets (×109/L) | 235.0 (201.5–258.5) | 207.0 (160.8–243.8) | 0.0601 |
HGB (g/L) | 140 (132–151) | 144 (132–152) | 0.6189 |
Total protein (g/L) | 69.3 (66.9–71.5) | 70.7 (67.8–73.1) | 0.3111 |
Genetic alterations (n, %) | |||
Del 11q22.3 | - | 6/31 (19.4%) | |
Del 17q13.1 | - | 1/31 (3.2%) | |
Trisomy 12 | - | 2/27 (7.4%) | |
Del 13q14.2-q14.3 | - | 21/31 (67.7%) | |
Number of SARS-CoV-2 vaccine doses received (n, %) | 0.4739 | ||
4 doses | 2 (15.4%) | 5 (13.2%) | |
3 doses | 8 (61.5%) | 16 (42.1%) | |
2 doses | 3 (23.1%) | 11 (28.9%) | |
1 dose | 0 | 6 (15.8%) | |
Time since last vaccination (days) | 153 (114.0–480.5) | 312.5 (179.0–480.3) | 0.2492 |
Healthy Controls (n = 13) | CLL Patients (n = 38) | p Value * | |
---|---|---|---|
Anti-SARS-CoV-2 NCP IgG status (n, %) | 0.6903 | ||
Negative | 5 (38.5%) | 19 (50.0%) | |
Borderline | 1 (7.7%) | 2 (5.3%) | |
Positive | 7 (53.8%) | 17 (44.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šlisere, B.; Kārkliņš, R.; Rivkina, A.; Lejniece, S.; Oļeiņika, K. Attenuated SARS-CoV-2-Specific T Cell Responses Are Associated with T Follicular Helper Cell Expansion in Treatment-Naive Chronic Lymphocytic Leukemia Patients. Pathogens 2025, 14, 890. https://doi.org/10.3390/pathogens14090890
Šlisere B, Kārkliņš R, Rivkina A, Lejniece S, Oļeiņika K. Attenuated SARS-CoV-2-Specific T Cell Responses Are Associated with T Follicular Helper Cell Expansion in Treatment-Naive Chronic Lymphocytic Leukemia Patients. Pathogens. 2025; 14(9):890. https://doi.org/10.3390/pathogens14090890
Chicago/Turabian StyleŠlisere, Baiba, Roberts Kārkliņš, Alla Rivkina, Sandra Lejniece, and Kristīne Oļeiņika. 2025. "Attenuated SARS-CoV-2-Specific T Cell Responses Are Associated with T Follicular Helper Cell Expansion in Treatment-Naive Chronic Lymphocytic Leukemia Patients" Pathogens 14, no. 9: 890. https://doi.org/10.3390/pathogens14090890
APA StyleŠlisere, B., Kārkliņš, R., Rivkina, A., Lejniece, S., & Oļeiņika, K. (2025). Attenuated SARS-CoV-2-Specific T Cell Responses Are Associated with T Follicular Helper Cell Expansion in Treatment-Naive Chronic Lymphocytic Leukemia Patients. Pathogens, 14(9), 890. https://doi.org/10.3390/pathogens14090890