Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Peripheral Blood Mononuclear Cell Separation
2.3. RNA Purification
2.4. Seropositivity of BLV Infection and Proviral Load Evaluation
2.5. Sample Selection, Library Preparation, and Sequencing
2.6. Genome Mapping and Quality Control
2.7. Differential Expression Gene (DEG) Analysis
2.8. Network Building
2.9. Deciphering Biological Networks: Uncovering Functional Clusters and Elucidating Cellular Processes
3. Results
3.1. PVL Results of AC and PL Groups
3.2. Differential Gene Expression
3.3. Functional Analysis
3.4. The PPINs Analysis
3.5. Hub Gene Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Notsu, K.; Wiratsudakul, A.; Mitoma, S.; El Daous, H.; Kaneko, C.; El-Khaiat, H.M.; Norimine, J.; Sekiguchi, S. Quantitative Risk Assessment for the Introduction of Bovine Leukemia Virus-Infected Cattle Using a Cattle Movement Network Analysis. Pathogens 2020, 9, 903. [Google Scholar] [CrossRef]
- Lv, G.; Wang, J.; Lian, S.; Wang, H.; Wu, R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals 2024, 14, 297. [Google Scholar] [CrossRef]
- Qualley, D.F.; Cooper, S.E.; Ross, J.L.; Olson, E.D.; Cantara, W.A.; Musier-Forsyth, K. Solution Conformation of Bovine Leukemia Virus Gag Suggests an Elongated Structure. J. Mol. Biol. 2019, 431, 1203–1216. [Google Scholar] [CrossRef]
- Digiacomo, R.F. The Epidemiology and Control of Bovine Leukosis Virus Infection. Vet. Med. 1992, 87, 248–257. [Google Scholar]
- Cordero-Pulido, R.M.; Martinez-Herrera, D.I.; Vivanco-Cid, H.; Villagomez-Cortes, J.A.; Arendt, M.L.; Grube-Pagola, P.; Dominguez-Aleman, C.A. Molecular Detection of Bovine Leukosis Virus in Naturally Infected Dairy and Dual-Purpose Cattle in Mexico. Vet. Res. Forum 2023, 14, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Florins, A.; Boxus, M.; Vandermeers, F.; Verlaeten, O.; Bouzar, A.-B.; Defoiche, J.; Hubaux, R.; Burny, A.; Kettmann, R.; Willems, L. Emphasis on Cell Turnover in Two Hosts Infected by Bovine Leukemia Virus: A Rationale for Host Susceptibility to Disease. Vet. Immunol. Immunopathol. 2008, 125, 1–7. [Google Scholar] [CrossRef]
- Lendez, P.A.; Passucci, J.A.; Poli, M.A.; Gutierrez, S.E.; Dolcini, G.L.; Ceriani, M.C. Association of TNF-α Gene Promoter Region Polymorphisms in Bovine Leukemia Virus (BLV)-Infected Cattle with Different Proviral Loads. Arch. Virol. 2015, 160, 2001–2007. [Google Scholar] [CrossRef]
- Polat, M.; Takeshima, S.-N.; Aida, Y. Epidemiology and Genetic Diversity of Bovine Leukemia Virus. Virol. J. 2017, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.N.; Bychko, V.V.; Meldraĭs, A.I.; Tsimanis, A.I.; Dresher, B. Primary Structure of the 3′-Terminal Region of the Cloned DNA of the Bovine Leukemia Virus. Bioorg. Khim. 1986, 12, 420–423. [Google Scholar]
- Zyrianova, I.M.; Kovalchuk, S.N. Bovine Leukemia Virus Tax Gene/Tax Protein Polymorphism and Its Relation to Enzootic Bovine Leukosis. Virulence 2019, 11, 80–87. [Google Scholar] [CrossRef]
- Khan, Z.; Abubakar, M.; Arshed, M.J.; Aslam, R.; Sattar, S.; Shah, N.A.; Javed, S.; Tariq, A.; Bostan, N.; Manzoor, S. Molecular Investigation of Possible Relationships Concerning Bovine Leukemia Virus and Breast Cancer. Sci. Rep. 2022, 12, 4161. [Google Scholar] [CrossRef] [PubMed]
- Inoue, E.; Matsumura, K.; Soma, N.; Hirasawa, S.; Wakimoto, M.; Arakaki, Y.; Yoshida, T.; Osawa, Y.; Okazaki, K. L233P Mutation of the Tax Protein Strongly Correlated with Leukemogenicity of Bovine Leukemia Virus. Vet. Microbiol. 2013, 167, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Tajima, S.; Aida, Y. Mutant Tax Protein from Bovine Leukemia Virus with Enhanced Ability to Activate the Expression of c-fos. J. Virol. 2002, 76, 2557–2562. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Murakami-Kawai, M.; Kamisuki, S.; Hisanobu, S.; Tsurukawa, Y.; Uchiyama, J.; Sakaguchi, M.; Tsukamoto, K. Specific Antiviral Effect of Violaceoid E on Bovine Leukemia Virus. Virology 2021, 562, 1–8. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; Li, M.; Li, P.; Ji, S. Virus-Induced Host Genomic Remodeling Dysregulates Gene Expression, Triggering Tumorigenesis. Front. Cell. Infect. Microbiol. 2024, 14, 1359766. [Google Scholar] [CrossRef]
- Mendiola, W.P.S.; Tórtora, J.L.; Martínez, H.A.; García, M.M.; Cuevas-Romero, S.; Cerriteño, J.L.; Ramírez, H. Genotyping Based on the LTR Region of Small Ruminant Lentiviruses from Naturally Infected Sheep and Goats from Mexico. BioMed Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Lv, G.; Wang, H.; Wang, J.; Lian, S.; Wu, R. Effect of BLV Infection on the Immune Function of Polymorphonuclear Neutrophil in Dairy Cows. Front. Vet. Sci. 2021, 8, 737608. [Google Scholar] [CrossRef]
- González-Méndez, A.S.; Pérez, J.L.T.; Rojas-Anaya, E.; Álvarez, H.R. Study of the Genetic Expression of Antiretroviral Restriction Factors and Acute Phase Proteins in Cattle Infected with Bovine Leukemia Virus. Pathogens 2023, 12, 529. [Google Scholar] [CrossRef]
- Jiang, Y.; Hatzi, K.; Elemento, O.; Melnick, A. Enhancer Profiling Reveals SOX9 As a Novel Transcription Regulator of B Cell Activation and DLBCL Transformation. Blood 2012, 120, 527. [Google Scholar] [CrossRef]
- Jo, A.; Denduluri, S.; Zhang, B.; Wang, Z.; Yin, L.; Yan, Z.; Kang, R.; Shi, L.L.; Mok, J.; Lee, M.J.; et al. The Versatile Functions of Sox9 in Development, Stem Cells, and Human Diseases. Genes Dis. 2014, 1, 149–161. [Google Scholar] [CrossRef]
- Mathers, A.R.; Cuff, C.F. Role of Interleukin-4 (IL-4) and IL-10 in Serum Immunoglobulin G Antibody Responses following Mucosal or Systemic Reovirus Infection. J. Virol. 2004, 78, 3352–3360. [Google Scholar] [CrossRef]
- Ohishi, K.; Kabeya, H.; Amanuma, H.; Onuma, M. Peptide-Based Bovine Leukemia Virus (BLV) Vaccine That Induces BLV-Env Specific Th-1 Type Immunity. In Animal Cell Technology: Basic & Applied Aspects; Springer: Dordrecht, The Netherlands, 1997; pp. 223–226. [Google Scholar]
- Shichijo, T.; Yasunaga, J.-I.; Sato, K.; Nosaka, K.; Toyoda, K.; Watanabe, M.; Zhang, W.; Koyanagi, Y.; Murphy, E.L.; Bruhn, R.L.; et al. Vulnerability to APOBEC3G Linked to the Pathogenicity of Deltaretroviruses. Proc. Natl. Acad. Sci. USA 2024, 121, e2309925121. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E.; Krishnamurthy, M.; Goodyer, C.G.; Wang, R. The Emerging Role of SOX Transcription Factors in Pancreatic Endocrine Cell Development and Function. Stem Cells Dev. 2009, 18, 1379–1388. [Google Scholar] [CrossRef]
- Rex, M.; Church, R.; Tointon, K.; Ichihashi, R.M.; Mokhtar, S.; Uwanogho, D.; Sharpe, P.T.; Scotting, P.J. Granule Cell Development in the Cerebellum Is Punctuated by Changes in Sox Gene Expression. Mol. Brain Res. 1998, 55, 28–34. [Google Scholar] [CrossRef]
- Liang, T.; Li, G.; Lu, Y.; Hu, M.; Ma, X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023, 15, 985. [Google Scholar] [CrossRef] [PubMed]
- Wasthi, N.; Ward, A.C.; Liongue, C. Analysis of Potential Non-Canonical or Alternate STAT5 Functions in Immune Development and Growth. Front. Biosci. (Landmark Ed.) 2023, 28, 187. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, M.; Rasskazov, D.; Arkova, O.; Ponomarenko, P.; Suslov, V.; Savinkova, L.; Kolchanov, N. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene’s Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter. BioMed Res. Int. 2015, 2015, 359835. [Google Scholar] [CrossRef]
- El-Mayet, F.S.; Jones, C.; Frappier, L. A Cell Cycle Regulator, E2F2, and Glucocorticoid Receptor Cooperatively Transactivate the Bovine Alphaherpesvirus 1 Immediate Early Transcription Unit 1 Promoter. J. Virol. 2024, 98, e0042324. [Google Scholar] [CrossRef]
- McAlister, J.C.; Joyce, N.C.; Harris, D.L.; Ali, R.R.; Larkin, D.F.P. Induction of Replication in Human Corneal Endothelial Cells by E2F2 Transcription Factor cDNA Transfer. Investig. Ophthalmol. Vis. 2005, 46, 3597–3603. [Google Scholar] [CrossRef]
- Sáenz-Robles, M.T.; Markovics, J.A.; Chong, J.-L.; Opavsky, R.; Whitehead, R.H.; Leone, G.; Pipas, J.M. Intestinal Hyperplasia Induced by Simian Virus 40 Large Tumor Antigen Requires E2F2. J. Virol. 2007, 81, 13191–13199. [Google Scholar] [CrossRef]
- Yamada, K.; Ariyoshi, K.; Onishi, M.; Miyajima, A.; Hayakawa, F.; Towatari, M.; Saito, H.; Oka, Y.; Asano, S.; Nosaka, T.; et al. Constitutively Active STAT5A and STAT5B in Vitro and in Vivo: Mutation of STAT5 Is Not a Frequent Cause of Leukemogenesis. Int. J. Hematol. 2000, 71, 46–54. [Google Scholar]
- Stone, D.M.; Norton, L.K.; Magnuson, N.S.; Davis, W.C. Elevated pim-1 and c-myc Proto-Oncogene Induction in B Lymphocytes from BLV-Infected Cows with Persistent B Lymphocytosis. Leukemia 1996, 10, 1629–1638. [Google Scholar]
- Li, Y.; Yamane, D.; Lemon, S.M.; Ou, J.-H.J. Dissecting the Roles of the 5′ Exoribonucleases Xrn1 and Xrn2 in Restricting Hepatitis C Virus Replication. J. Virol. 2015, 89, 4857–4865. [Google Scholar] [CrossRef]
- Ternette, N.; Wright, C.; Kramer, H.B.; Altun, M.; Kessler, B.M. Label-Free Quantitative Proteomics Reveals Regulation of Interferon-Induced Protein with Tetratricopeptide Repeats 3 (IFIT3) and 5′-3′-Exoribonuclease 2 (XRN2) during Respiratory Syncytial Virus Infection. J. Virol. 2011, 8, 442. [Google Scholar] [CrossRef] [PubMed]
- Kellner, M.; Hörmann, J.; Fackler, S.; Hu, Y.; Zhou, T.; Lu, L.; Ilik, I.; Aktas, T.; Feederle, R.; Hauck, S.M.; et al. The Nuclear Speckles Protein SRRM2 Is Exposed on the Surface of Cancer Cells. Cells 2024, 13, 1563. [Google Scholar] [CrossRef]
- Ashraf, U.; Benoit-Pilven, C.; Lacroix, V.; Navratil, V.; Naffakh, N. Advances in Analyzing Virus-Induced Alterations of Host Cell Splicing. Trends Microbiol. 2019, 27, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.J.; Hershberger, C.E.; Gu, X.; Schueger, C.; DiPasquale, W.M.; Brick, J.; Saunthararajah, Y.; Maciejewski, J.P.; Padgett, R.A. Functional Analyses of Human LUC7-Like Proteins Involved in Splicing Regulation and Myeloid Neoplasms. Cell Rep. 2021, 35, 108989. [Google Scholar] [CrossRef]
- Yao, S.; Yuan, C.; Shi, Y.; Qi, Y.; Sridha, R.; Dai, M.; Cai, H. Alternative Splicing: A New Therapeutic Target for Ovarian Cancer. Technol. Cancer Res. Treat. 2022, 21. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Gu, K.; Wei, J.; Zhang, J. METTL3-Mediated the m6A Modification of SF3B4 Facilitates the Development of Non-Small Cell Lung Cancer by Enhancing LSM4 Expression. Thorac. Cancer 2024, 15, 919–928. [Google Scholar] [CrossRef]
- Chen, L.; Lin, Y.-H.; Liu, G.-Q.; Huang, J.-E.; Wei, W.; Yang, Z.-H.; Hu, Y.-M.; Xie, J.-H.; Yu, H.-Z. Clinical Significance and Potential Role of LSM4 Overexpression in Hepatocellular Carcinoma: An Integrated Analysis Based on Multiple Databases. Front. Genet. 2022, 12, 804916. [Google Scholar] [CrossRef]
- Yin, J.; Lin, C.; Jiang, M.; Tang, X.; Xie, D.; Chen, J.; Ke, R. CENPL, ISG20L2, LSM4, MRPL3 Are Four Novel Hub Genes and May Serve as Diagnostic and Prognostic Markers in Breast Cancer. Sci. Rep. 2021, 11, 15610. [Google Scholar] [CrossRef]
- Reddy, R.B.; Khora, S.S.; Suresh, A.; Ganti, A.K. Molecular Prognosticators in Clinically and Pathologically Distinct Cohorts of Head and Neck Squamous Cell Carcinoma—A Meta-Analysis Approach. PLoS ONE 2019, 14, e0218989. [Google Scholar] [CrossRef]
- Tanabe, Y.; Tsuda, H.; Yoshida, M.; Yunokawa, M.; Yonemori, K.; Shimizu, C.; Yamamoto, S.; Kinoshita, T.; Fujiwara, Y.; Tamura, K. Pathological Features of Triple-Negative Breast Cancers That Showed Progressive Disease during Neoadjuvant Chemotherapy. Cancer Sci. 2017, 108, 1520–1529. [Google Scholar] [CrossRef]
- Yin, D.; Kong, C.; Chen, M. Effect of hnRNPA2/B1 on the Proliferation and Apology of Glioma U251 Cells via the Regulation of AKT and STAT3 Pathways. Biosci. Rep. 2020, 40, BSR20190318. [Google Scholar] [CrossRef] [PubMed]
- Zuo, D.; Chen, Y.; Cai, J.-P.; Yuan, H.-Y.; Wu, J.-Q.; Yin, Y.; Xie, J.-W.; Lin, J.-M.; Luo, J.; Feng, Y.; et al. A hnRNPA2B1 Agonist Effectively Inhibits HBV and SARS-CoV-2 Omicron in Vivo. Protein Cell 2022, 14, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Valiente-Echeverría, F.; Melnychuk, L.; Vyboh, K.; Ajamian, L.; Gallouzi, I.-E.; Bernard, N.; Mouland, A.J. eEF2 and Ras-GAP SH3 Domain-Binding Protein (G3BP1) Modulate Stress Granule Assembly during HIV-1 Infection. Nat. Commun. 2014, 5, 4819. [Google Scholar] [CrossRef] [PubMed]
- Ardecky, R.; Madiraju, C.; Matsuzawa, S.-I.; Zou, J.; Ganji, S.; Pass, I.; Ngo, T.A.; Pinkerton, A.B.; Sergienko, E.; Su, Y.; et al. Selective UBC13 Inhibitors. In Probe Reports from the NIH Molecular Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010. [Google Scholar]
- Naito, M. Inhibition of Apoptosis by a Huge UBC Protein, Apollon/BRUCE/BIRC6. Seikagaku 2006, 51, 1391–1394. [Google Scholar]
- Hussain, A.; Wesley, C.; Khalid, M.; Chaudhry, A.; Jameel, S. Human Immunodeficiency Virus Type 1 Vpu Protein Interacts with CD74 and Modulates Major Histocompatibility Complex Class II Presentation. J. Virol. 2008, 82, 893–902. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, L.; Tan, S.; Jiang, S.; Chen, Y.-H. HIV-1 Glycoprotein 41 Ectodomain Induces Activation of the CD74 Protein-Mediated Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway to Enhance Viral Infection. J. Biol. Chem. 2011, 286, 44869–44877. [Google Scholar] [CrossRef]
Comparison | Upregulated Genes/Pathways | Downregulated Genes/Pathways | Hub Genes (PPIN Analysis) | Functional Category | Notes |
---|---|---|---|---|---|
CT vs. AC | TLR7, APOBEC3Z2, HEXIM2 | Partial decrease in IL-12α, SSA2 | No major hubs identified | Innate immune activation, antiviral defense | Suggests early immune activation in asymptomatic carriers |
CT vs. PL | MHC Class II (BOLA genes), HEXIM1/2, APOBEC3H/Z2, IL-4, IL-10, TGF-β | IL-1β, IL-12α/β, TLR3,7,9, haptoglobin, SAA2/3 | NCOR1, SRRM2, LUC7L3, TWISTNB, LSM4 | Adaptive immunity shift, anti-inflammatory signaling, RNA processing | Indicates immune suppression and humoral bias in PL stage |
PL vs. AC | Distinct activation of protein metabolism genes | TLR3,9, haptoglobin, SAA3, IL-1β, IL-12β | EEF2, UBC, CD74, HNRNPA2B1 | Oncogenic progression, protein translation, RNA processing | Represents transition toward malignancy-like changes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Méndez, A.S.; Akbarin, M.M.; Cerón-Téllez, F.; Acevedo-Jiménez, G.E.; Rodríguez-Murillo, C.; González-Fernández, V.D.; Ávila-De la Vega, L.d.M.; Leal-Hernández, M.; Ramírez Álvarez, H. Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study. Pathogens 2025, 14, 887. https://doi.org/10.3390/pathogens14090887
González-Méndez AS, Akbarin MM, Cerón-Téllez F, Acevedo-Jiménez GE, Rodríguez-Murillo C, González-Fernández VD, Ávila-De la Vega LdM, Leal-Hernández M, Ramírez Álvarez H. Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study. Pathogens. 2025; 14(9):887. https://doi.org/10.3390/pathogens14090887
Chicago/Turabian StyleGonzález-Méndez, Ana S., Mohammad Mehdi Akbarin, Fernando Cerón-Téllez, Gabriel Eduardo Acevedo-Jiménez, Cecilia Rodríguez-Murillo, Víctor David González-Fernández, Lucero de María Ávila-De la Vega, Marisela Leal-Hernández, and Hugo Ramírez Álvarez. 2025. "Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study" Pathogens 14, no. 9: 887. https://doi.org/10.3390/pathogens14090887
APA StyleGonzález-Méndez, A. S., Akbarin, M. M., Cerón-Téllez, F., Acevedo-Jiménez, G. E., Rodríguez-Murillo, C., González-Fernández, V. D., Ávila-De la Vega, L. d. M., Leal-Hernández, M., & Ramírez Álvarez, H. (2025). Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study. Pathogens, 14(9), 887. https://doi.org/10.3390/pathogens14090887