Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Population
2.2. SNAP ® 4Dx ® Plus Test
2.3. Molecular Analysis
2.4. PCR for the Amplification of the Target Part of the DNA of Dirofilaria immitis Species
2.5. Nested and Semi-Nested PCR Reactions for the Amplification of Regions Within the 16S rRNA and GroEL Segments of the A. phagocytophilum Genome
2.6. Nested and Semi-Nested PCR Reaction for the Amplification of B. burgdorferi
2.7. Statistical Analysis
3. Results
3.1. Results of the Examination with the SNAP ® 4Dx ® Plus Test
3.2. Results of the Molecular Protocols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Socolovschi, C.; Mediannikov, O.; Raoult, D.; Parola, P. Update on tick-borne bacterial diseases in Europe. Parasite 2009, 16, 259–273. [Google Scholar] [CrossRef]
- Dykstra, E.A.; Oltean, H.N.; Kangiser, D.; Marsden-Haug, N.; Rich, S.M.; Xu, G.; Lee, M.K.; Morshed, M.G.; Graham, C.B.; Eisen, R.J. Ecology and Epidemiology of Tickborne Pathogens, Washington, USA, 2011–2016. Emerg. Infect. Dis. 2020, 26, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef] [PubMed]
- Riebenbauer, K.; Weber, P.B.; Walochnik, J.; Karlgofer, F.; Winkler, S.; Dorferi, S.; Auer, H.; Valencaki, J.; Laimer, M.; Handisurya, A. Human dirofilariosis in Austria: The past, the present, the future. Parasite Vectors 2021, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Vorou, R.M.; Papavassiliou, V.G.; Tsiodras, S. Emerging zoonoses and vector-borne infections affecting human sin Europe. Epidemiol. Infect. 2007, 135, 1231–1247. [Google Scholar] [CrossRef]
- Beugnet, F.; Marie, J.-L. Emerging arthropod-borne diseases of companion animals in Europe. Vet. Parasitol. 2009, 163, 298–305. [Google Scholar] [CrossRef]
- Otranto, D.; Cantacessi, C.; Pfeffer, M.; Dantas-Torres, F.; Brianti, E.; Deplazes, P.; Genchi, C.; Guberti, V.; Capelli, G. The role of wild canids and felids in spreading parasites to dogs and cats in Europe Part I: Protozoa and tick-borne agents. Vet. Parasitol. 2015, 213, 12–23. [Google Scholar] [CrossRef]
- Otranto, D.; Cantacessi, C.; Dantas-Torres, F.; Brianti, E.; Pfeffer, M.; Genchi, C.; Guberti, V.; Capelli, G.; Deplazes, P. The role of wild canids and felids in spreading parasites to dogs and cats in Europe Part II: Helminths and arthropods. Vet. Parasitol. 2015, 213, 24–37. [Google Scholar] [CrossRef]
- Andre, M.R. Diversity of Anaplasrna and Ehrlichia/Neoehrlichia agents in terrestriaI wild carnivores worldwide: Implications for human and domestic animal health and wildlife conservation. Front. Vet. Sci. 2018, 5, 293. [Google Scholar] [CrossRef]
- Gotić, J.; Crnogaj, M.; Šmit, I.; Brkljača Bottegaro, N.; Grden, D.; Mrljak, V.; Beck, R. Equine piroplasmosis. Vet. Stanica 2021, 52, 97–104. (In Croatian) [Google Scholar] [CrossRef]
- Nahal, A.; Righi, S.; Boucheikhchoukh, M.; Benakhla, A. Prevalence of ectoparasites in free-range backyard chicken flocks in northeast Algeria. Vet. Stanica 2021, 52, 693. [Google Scholar] [CrossRef]
- Matei, I.A.; Estrada-Peña, A.; Cutler, S.J.; Vayssier-Taussat, M.; Varela-Castro, L.; Potkonjak, A.; Zeller, H.; Mihalca, A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors 2019, 12, 599–618. [Google Scholar] [CrossRef]
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophilum. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar] [CrossRef]
- Bown, K.J.; Begon, M.; Bennett, M.; Birtles, R.J.; Burthe, S.; Lambin, X.; Telfer, S.; Woldehiwet, Z.; Ogden, N.H. Sympatric Ixodes trianguliceps and Ixodes ricinus ticks feeding on field voles (Microtus agrestis): Potential for increased risk of Anaplasrna phagocytophilum in the United Kingdom? Vector Borne Zoonotic Dis. 2006, 6, 404–410. [Google Scholar] [CrossRef]
- Acosta-Jamett, G.; Weitzel, T.; Lopez, J.; Alvarado, D.; Abarca, K. Prevalence and Risk Factors of Antibodies to Anaplasma spp. in Chile: A Household-Based Cross-Sectional Study in Healthy Adults and Domestic Dogs. Vector Borne Zoonotic Dis. 2020, 20, 572–579. [Google Scholar] [CrossRef]
- Jiang, M.; Xie, Y.; Li, S.; Xiao, S.; Zhang, Y.; Yang, Y.; Wang, Y.; Sheng, J. Anaplasma ovis and Anaplasma phagocytophilum Infection in Sheep and Wild Rodents from Northern Xinjiang, Northwest China. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 295–298. [Google Scholar] [CrossRef]
- Langenwalder, D.B.; Silaghi, C.; Nieder, M.; Pfeffer, M.; Von Loewenich, F.D. Co-infection, reinfection and superinfection with Anaplasma phagocytophilum strains in a cattle herd based on ank A gene and multilocus sequence typing. Parasites Vectors 2020, 13, 157–169. [Google Scholar] [CrossRef]
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme Disease in the United States and Europe. Emerg. Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef]
- Wójcik-Fatla, A.; Sawczyn-Doma, A.; Kloc, A.; Krzowska-Firych, J.; Sroka, J. Seroprevalence of Borrelia, Anaplasma, Bartonella, Toxoplasma, Mycoplasma, Yersinia, and Chlamydia in Human Population from Eastern Poland. Pathogens 2025, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- WOAH. Borrelia spp. Technical Disease Cards. 2020. Available online: https://www.woah.org/app/uploads/2022/02/borrelia-spp-infection-with.pdf (accessed on 17 July 2025).
- Duncan, A.W.; Correa, M.T.; Levine, J.F.; Breitschwerdt, E.B. The dog as a sentinel for human infection: Prevalence of Borrelia burgdorferi C6 antibodies in dogs from southeastern and mid- Atlantic states. Vector Borne Zoonotic Dis. 2004, 4, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R. Neuroborreliosis. J. Neurol. 1988, 245, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Henningsson, A.J.; Malmvall, B.E.; Ernerudh, J.; Mattusek, A.; Forsberg, P. Neuroborreliosis—An epidemiological, clinical and healthcare cost study from an endemic area in the south-east of Sweden. Clin. Microbiol. Infect. 2010, 16, 1245–1251. [Google Scholar] [CrossRef]
- Batinac, T.; Petranović, D.; Zamolo, G.; Ružić, A. Lyme borreliosis and multiple sclerosis are associated with primary effusion lymphoma. Med. Hypotheses 2007, 69, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Morchon, R.; Montoya-Alonso, J.A.; Rodriguez-Escolar, I.; Carreton, E. What Has Happened to Heartworm Disease in Europe in the Last 10 Years? Pathogens 2022, 11, 1042. [Google Scholar] [CrossRef]
- Simón, F.; Siles-Lucas, M.; Morchón, R.; González-Miguel, J.; Mellado, I.; Carretón, E.; Montoya-Alonso, J.A. Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clin. Microbiol. Rev. 2012, 25, 507–544. [Google Scholar] [CrossRef]
- Méndez, J.C.; Carretón, E.; Martínez, S.; Tvarijonaviciute, A.; Cerón, J.J.; Montoya-Alonso, J.A. Acute phase response in dogs with Dirofilaria immitis. Vet. Parasitol. 2014, 204, 420–425. [Google Scholar] [CrossRef]
- Monobe, M.M.; da Silva, R.C.; Araujo Junior, J.P.; Takahira, R.K. Microfilaruria by Dirofilaria immitis in a dog: A rare clinical pathological finding. J. Parasit. Dis. 2017, 41, 805–808. [Google Scholar] [CrossRef]
- Boretti, F.S.; Perreten, A.; Meli, M.L.; Cattori, V.; Willi, B.; Wengi, N.; Hornok, S.; Honegger, H.; Hegglin, D.; Woelfel, R.; et al. Molecular investigation of Rickettsia helvetica infection in dogs, foxes, humans and ixodes ticks. Appl. Environ. Microbiol. 2009, 75, 3230–3237. [Google Scholar] [CrossRef]
- Hornok, S.; De La Fuente, J.; Horvath, G.; De Mera, I.G.F.; Wijnveld, M.; Tanczos, B.; Farkas, R.; Jongejan, F. Molecular evidence of Ehrlichia canis and Rickettsia massiliae in Ixodid ticks of carnivores from south Hungary. Acta Vet. Hung. 2013, 61, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Duscher, G.G.; Fuehrer, H.P.; Kübber-Heiss, A. Fox on the run–molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasites Vectors 2014, 7, 521. [Google Scholar] [CrossRef]
- Härtwig, V.; Von Loewenich, F.D.; Schulze, C.; Straubinger, R.K.; Daugschies, A.; Dyachenko, V. Detection of Anaplasma phagocytophilum in red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) from Brandenburg, Germany. Ticks Tick Borne Dis. 2014, 5, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Dumitrache, M.O.; Matei, I.A.; Ionică, A.M.; Kalmar, Z.; D’Amico, G.; Siko-Barabasi, S.; Ionescu, D.T.; Gherman, C.M.; Mihalca, A.D. Molecular detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato genospeciesin red foxes (Vulpes vulpes) from Romania. Parasites Vectors 2015, 8, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Camacho, N.; Canto-Alarcon, G.J.; Jones, R.W.; Zamora-Ledesma, S.; Ruiz-Botello, J.M.; Camacho-Macias, B. Dirofilaria immitis (Spiruda: Onchocercidae) filariae in grey fox (Urocyn cinereoargenteus) in Mexico. Rev. Mex. Biodivers. 2015, 86, 252–254. [Google Scholar] [CrossRef]
- Tolnai, Z.; Sreter-Lancz, Z.; Sreter, T. Spatial distribution of Anaplasma phagocytophilum and Hepatozoon canis in red foxes (Vulpes vulpes) in Hungary. Ticks Tick Borne Dis. 2015, 6, 645648. [Google Scholar] [CrossRef]
- Maia, C.; Almeida, B.; Coimbra, M.; Fernandes, M.C.; Cristovao, J.M.; Ramos, C.; Martins, A.; Martinho, F.; Silva, P.; Neves, N.; et al. Bacterial and protozoal agents of canine vector-borne diseases in the blood domestic and stray dogs from southern Portugal. Parasites Vectors 2015, 8, 138. [Google Scholar] [CrossRef]
- Aguilar-Tipacamu, G.; Carvajal-Gamez, B.I.; Garcija-Rajon, J.; Machain-Willians, C.; Mosqueda, J. Immuno-molecular prospecting for vector-borne diseases in central Mexico. Transbound. Emerg. Dis. 2020, 67, 185–192. [Google Scholar] [CrossRef]
- Potkonjak, A.; Rojas, A.; Gutiérrez, R.; Nachum-Biala, Y.; Kleinerman, G.; Savić, S.; Polaček, V.; Pušić, I.; Harrus, S.; Baneth, G. Molecular survey of Dirofilaria species in stray dogs, red foxes and golden jackals from Vojvodina, Serbia. Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101409. [Google Scholar] [CrossRef]
- Wodecka, B.; Michalik, J.; Grochowalska, R. Red foxes (Vulpes vulpes) are exposed to high diversity of Borrelia burgdorferi sensu lato species infecting fox-derived Ixodes ticks in West Central Poland. Pathogens 2022, 11, 696. [Google Scholar] [CrossRef]
- Ferrara, G.; Brocherel, G.; Falorni, B.; Gori, R.; Pagnini, U.; Montagnaro, S. A retrospective serosurvey of selected pathogens in red foxes (Vulpes vulpes) in the Tuscany region, Italy. Acta Vet. Scand. 2023, 65, 35. [Google Scholar] [CrossRef]
- Lesiczka, P.M.; Rudenko, N.; Golovchenko, M.; Juránková, J.; Danek, O.; Modry, D.; Hrazdilová, K. Red fox (Vulpes vulpes) play an important role in the propagation of tick-borne pathogens. Ticks Tick Borne Dis. 2023, 14, 102076. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.L.; González, E.; Mckay, S.; Apaa, T.; Kent, A.J.; Cropper, P.; Berry, N.; Hernández-Triana, L.M.; Johnson, N. Short Communication: Anaplasma Phagocytophilum and Babesia Spp. In Ixodid Ticks Infesting Red Foxes (Vulpes Vulpes) In Great Britain. Ticks Tick Borne Dis. 2024, 15, 102401. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, E.C.; McNamara, B.; Hayman, S.; Blasdell, K.; Athan, E.; O’Brien, D.P.; Muleme, M. The Role of Foxes in Transmitting Zoonotic Bacteria to Humans: A Scoping Review. Zoonoses Public Health 2025, 1–16. [Google Scholar] [CrossRef]
- Kazimírová, M.; Mangová, B.; Chvostác, M.; Didyk, Y.M.; de Alba, P.; Mira, A.; Purgatová, S.; Selyemová, D.; Taragelová, V.R.; Schnittger, L. The role of wildlife in the epidemiology of tick-borne diseases in Slovakia. Curr. Res. Parasitol. Vector-Borne Dis. 2024, 100195, 6. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Trebino, C.; Guardone, L.; Bertelloni, F.; Cagnoli, G.; Nardoni, S.; Sel, E.; Wilde, E.; Poli, A.; Mancianti, F. Occurrence of bacterial and protozoan pathogens in Red Foxes (Vulpes vulpes) in Central Italy. Animals 2022, 12, 2891. [Google Scholar] [CrossRef]
- Živanović, B.; Ler, Z.; Cekanac, R. Risk of infection with Borrelia burgdorferi in an area endemic for Lyme disease. Vojnosanit. Pregl. 1991, 48, 400–404. [Google Scholar]
- Golubić, D.; Riipkema, S.; Tkalec-Makovec, N.; Ružić, E. Epidemiologic, ecologic and clinical characteristics of Lyme borrelliosis in northwest Croatia. Acta Med. Croat. 1998, 52, 7–13. [Google Scholar]
- Poljak, I.; Troselj-Vukić, B.; Miletić, B. Low sero-prevalence of Lyme borreliosis in the forested mountainous area of Gorski Kotar. Croatia. Croat. Med. J. 2000, 41, 433–436. [Google Scholar]
- Topolovec, J.; Puntaric, D.; Antolovic-Pozgain, A.; Vukovic, D.; Topolovec, Z.; Milas, J.; Drusko-Barisic, V.; Venus, M. Serologically detected “new” tick-borne zoonoses in eastern Croatia. Croat. Med. J. 2003, 44, 626–629. [Google Scholar]
- Puizina-Ivić, N.; Džakula, N.; Bezić, J.; Punda-Polić, V.; Sardelić, S.; Kuzmić-Prusac, I. First two cases of human dirofilariasis recorded in Croatia. Parasite 2003, 10, 382–384. [Google Scholar] [PubMed]
- Sviben, M.; Meštrović, T.; Nemer, K.; Palko-Bartulović, K.; Škara, R.; Mlinarić Galinović, G. Dirofilaria repens as a cause of subconjunctival infection in a 77-years old female patient from Croatia—A case report. Coll. Antropol. 2003, 37, 995–997. [Google Scholar]
- Mulić, R.; Petrović, B.; Klišmanić, Z.; Jerončić, I. Tick-borne diseases in the Republic of Croatia (in Croatian). Liječničkom Vjesn. 2011, 133, 89–95. [Google Scholar]
- Pupić-Bakrač, A.; Pupić-Bakrač, J.; Jurković, D.; Capar, M.; Lazarić Stefanović, L.; Antunović Ćelović, I.; Kučinar, J.; Polkinghorne, A.; Beck, R. The trends of human dirofilariasis in Croatia: Yesterday-Today-Tomorrow. One Health 2020, 10, 100153. [Google Scholar] [CrossRef] [PubMed]
- Živičnjak, T.; Martinković, F.; Beck, R. Dirofilariosis in Croatia: Spread and public health impact. In 5th Croatian Congress on Infective Diseases; Abstract Book; Croatian Microbiological Society: Zadar, Croatia, 2006; pp. 23–27. [Google Scholar]
- Mrljak, V.; Kules, J.; Mihaljevic, Z. Prevalence and Geographic Distribution of Vector-Borne Pathogens in Apparently Healthy Dogs in Croatia. Vector Borne Zoonotic Dis. 2017, 17, 398–408. [Google Scholar] [CrossRef]
- Huber, D.; Reil, I.; Duvnjak, S.; Jurković, D.; Lukacevic, D.; Pilat, M.; Beck, A.; Mihaljevic, Z.; Vojta, L.; Polkinghorne, A.; et al. Molecular detection of Anaplasma platys, Anaplasma phagocytophilum and Wolbachia spp. but not Ehrlichia canis in Croatian dogs. Parasitol. Res. 2017, 116, 3019–3026. [Google Scholar] [CrossRef] [PubMed]
- Jurković, D.; Beck, A.; Huber, D.; Mihaljević, Z.; Polkinghorne, A.; Martinković, F.; Lukačević, D.; Pilat, M.; Brezak, R.; Bosnić, S.; et al. Seroprevalence of vector-borne pathogens in dogs from Croatia. Parasitol. Res. 2019, 118, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mraović, J.; Jurić, B.; Krznarić, M.; Tus, Z.; Lončar, M.; Vrkić, V.; Marinculić, A.; Krivičić, K.; Pavlak, M. Epidemiological study of certain zoonoses in dogs and assesment of risk factors (in Croatian). Vet. Stanica 2019, 50, 425–436. [Google Scholar]
- Jurković, D.; Mihaljević, Ž.; Duvnjak, S.; Silaghi, C.; Beck, R. First reports of indigenous lethal infection with Anaplasma marginale, Anaplasma bovis and Theileria orientalis in Croatian cattle. Ticks Tick Borne Dis. 2020, 11, 101469. [Google Scholar] [CrossRef]
- Beck, R.; Habrun, B.; Bosnić, S.; Benić, M.; Nemeth-Blažić, T.; Duvnjak, S. Identifikation of pathogens in Ixodes ricinus and Dermacentor reticulatus from public gardens in Zagreb, Croatia. In Proceedings of the 12th International Conference on Lyme Borreliosis and Other Tick-Borne Diseases, Ljubljana, Slovenia, 26–29 September 2010; p. 95. [Google Scholar]
- Dumić, T.; Pintur, K.; Šlat, D.; Beck, R.; Ozimec, S.; Florijančić, T. Survey of hard ticks (Acari: Ixodidae) infestation on wild boar and health risk of tick-borne diseases in Croatia. J. Environ. Prot. Ecol. 2020, 21, 518–524. [Google Scholar]
- Rishniw, M.; Barr, S.C.; Simpson, K.W.; Frongillo, M.F.; Franz, M.; Alpizar, J.L.D. Discrimination between six species of canine microfilariae by a single polymerase chain reaction. Vet. Parasitol. 2006, 135, 303–314. [Google Scholar] [CrossRef]
- Liz, J.S.; Sumner, J.W.; Pfister, K.; Brossard, M. PCR Detection and Serological Evidence of Granulocytic Ehrlichial Infection in Roe Deer (Capreolus capreolus) and Chamois (Rupicapra rupicapra). J. Clin. Microbiol. 2002, 40, 892–897. [Google Scholar] [CrossRef]
- Alberti, A.; Adis, M.F.; Sparagano, O.; Zobba, R.; Chessa, B.; Cubeddu, T.; Parpaglia, M.L.P.; Ardu, M.; Pittau, M. Anaplasma phagocytophilum, Sardinia, Italy. Emerg. Infect. Dis. 2005, 11, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Guy, E.C.; Stanek, G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 1991, 44, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibbson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic logical alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2000; pp. 47–87. [Google Scholar]
- Robertson, C.P.J.; Baker, P.J.; Harris, S. Ranging behaviour of juvenile red foxes and its implications for management. Acta Theriol. 2000, 45, 525–535. [Google Scholar] [CrossRef]
- Farkas, A.; Bidló, A.; Varga, B.B.; Jánoska, F. Accumulation of selected metals and concentration of macroelements in liver and kidney tissues of sympatric golden jackal (Canis aureus) and red fox (Vulpes vulpes) in Somogy County, Hungary. Environ. Sci. Pollut. Res. 2021, 28, 66724–66735. [Google Scholar] [CrossRef]
- Ebani, V.V.; Verin, R.; Fratini, F.; Poli, A.; Cerri, D. Molecular survey of Anaplasma phagocytophilum and Ehrlichia canis in red foxes (Vulpes vulpes) from Central Italy. J. Wildl. Dis. 2011, 47, 699–703. [Google Scholar] [CrossRef]
- Gortazar, C.; Castillo, J.A.; Lucientes, J.; Blanco, J.C.; Arriolabengoa, A.; Calvete, C. Factors affecting Dirofilaria immitis prevalence in red foxes in northeastern Spain. J. Wildl. Dis. 1994, 30, 545–547. [Google Scholar] [CrossRef]
- Torina, A.; Blanda, V.; Antoci, F.; Scimeca, S.; Agostino, R.D.; Scariano, E.; Piazza, A.; Galluzzo, P.; Giudice, E.; Caracappa, S. A molecular survey of Anaplasma spp., Rickettsia spp., Ehrlichia canis and Babesia microti in foxes and fleas from Sicily. Transbound. Emerg. Dis. 2013, 60, 125–130. [Google Scholar] [CrossRef]
- Karbowiak, G.; Vichova, B.; Majlathova, V.; Hapunik, J.; Petko, B. Anaplasma phagocytophilum infection of red foxes (Vulpes vulpes). Ann. Agric. Environ. Med. 2009, 16, 299–300. [Google Scholar]
- Naletić, Š.; Gagović, E.; Mihaljević, Ž.; Polkinghorne, A.; Beck, A.; Beck, R. Detection of Dirofilaria immitis in golden jackals (Canis aureus L.) but not in red foxes (Vulpes vulpes L.) and European badgers (Meles meles L.) in Croatia. Parasites Vectors 2024, 17, 490. [Google Scholar] [CrossRef] [PubMed]
- Anonimus. Water Area Management Plan Until 2027 (in Croatian). Offical Gazette 84/2023-1335. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2023_07_84_1335.html (accessed on 26 August 2025).
- Penezić, A.; Selaković, S.; Pavlović, I.; Cirović, D. First findings and prevalence of adult heartworms (Dirofilaria immitis) in wild carnivores from Serbia. Parasitol. Res. 2014, 113, 3281–3285. [Google Scholar] [CrossRef]
- Petruccelli, A.; Ferrara, G.; Iovane, G.; Schettini, R.; Ciarcia, R.; Caputo, V.; Pompameo, M.; Pagnini, U.; Montagnaro, S. Seroprevalence of Ehrlichia spp., Anaplasma spp., Borrelia burgdorferi sensu lato, and Dirofilaria immitis in Stray Dogs, from 2016 to 2019, in Southern Italy. Animals 2020, 11, 9. [Google Scholar] [CrossRef]
- Magi, M.; Calderini, P.; Gabrielli, S.; Dell Omodarme, M.; Macchioni, F.; Prati, M.C.; Cancrini, G. Vulpes vulpes: A possible wild reservoir for zoonotic filariae. Vector Borne Zoonotic Dis. 2008, 8, 249–252. [Google Scholar] [CrossRef]
- Cardoso, L.; Gilad, M.; Cortes, H.C.E.; Nachum-Biala, Y.; Lopes, A.P.; Vila-Vicosa, M.J.; Simoes, M.; Rodrigues, P.A.; Baneth, G. First report of Anaplasma platys infection in red foxes (Vulpes vulpes) and molecural detection of Ehrlichia canis and Leishmania infantum in foxes from Portugal. Parasites Vectors 2015, 8, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Conan, A.; Thrall, M.A.; Ketzis, J.K.; Branford, G.C.; Rajeev, S. Serologic and molecular diagnosis of Anaplasma platys and Ehrlichia canis infection in dogs in an endemic region. Pathogens 2020, 9, 488. [Google Scholar] [CrossRef]
- Liu, J.; Drexel, J.; Andrews, B.; Eberts, M.; Breischwerdt, E.; Chandrashekar, R. Comparative evaluation of 2 In-Clinic assays for vector-borne disease testing in dogs. Top. Companion Anim. Med. 2018, 33, 114–118. [Google Scholar] [CrossRef]
- Henry, L.G.; Brunson, K.J.; Walden, H.S.; Wenzlow, N.; Beachboard, S.E.; Barr, K.L.; Long, M.T. Comparison of six commercial antigen kits for detection of Dirofilaria immitis infections in canines with necropsy-confirmed heartworm status. Vet. Parasitol. 2018, 254, 178–182. [Google Scholar] [CrossRef]
- Gomes-De-Sa, S.; Santos-Silva, S.; De Sousa Moreira, A.; Ferreira Barradas, P.; Amorim, I.; Cardoso, L.; Mesquita, J.R. Dirofilaria immitis antigenemia and microfilaremia in Iberian wolves and red foxes from Portugal. Parasites Vectors 2022, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Ritthikulprasert, S.; Jirapiti, P.; Pengpis, S. Molecular and antigen detection of Dirofilaria immitis infection in client-owned cats in Bangkok, Thailand. Thai J. Vet. Med. 2020, 50, 109–113. [Google Scholar] [CrossRef]
- Lovrić, L.; Vavžil, V.; Živičnjak, T. Subclinical dirofilariosis in dogs in Croatia—Results of retrospective research based on archived blood samples. Vet. Arhiv. 2022, 92, 323–330. [Google Scholar] [CrossRef]
- Albonico, F.; Loiacono, M.; Gioia, G.; Genchi, C.; Genchi, M.; Mortarino, M. Rapid differentiation of Dirofilaria immitis and Dirofilaria repens in canine peripheral blood by real time PCR coupled to high resolution melting analysis. Vet. Parsitol. 2014, 200, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Jurković Žilić, D.; Gagović, E.; Dumić, T.; Pintur, K.; Beck, R. The first molecular detection of Erlichia species un ticks in Croatia. In Proceedings of the 7th Croatian Veterinary Congress, Dubrovnik, Croatia, 24–27 October 2024; p. 166. [Google Scholar]
County | Foxes Examined | Positive for D. immitis Antigen | CI 95% | Positive for Anaplasma Antibody | CI 95% | p-Value |
---|---|---|---|---|---|---|
N | % | % | ||||
Zagreb | 53 | 1.89 * | 0.05–10.51 | 11.32 | 4.15–24.64 | 0.0506 |
Krapina-Zagorje | 17 | 11.76 | 1.42–42.50 | 0 | 0 | 0.1450 |
Sisak-Moslavina | 21 | 14.29 | 2.95–41.75 | 4.76 | 0.12–26.53 | 0.2928 |
Karlovac | 26 | 15.39 | 4.19–39.39 | 23.08 | 6.89–39.28 | 0.4818 |
Varaždin | 13 | 0 | 0 | 7.69 | 0.16–42.86 | 0.3079 |
Bjelovar-Bilogora | 4 | 0 | 0 | 25.00 | 0.63–100.00 | 0.2850 |
Požega-Slavonia | 22 | 4.55 | 0.12–25.33 | 4.55 | 0.16–25.33 | 1.00 |
Međimurje | 19 | 0 | 0 | 10.53 | 1.27–38-02 | 0.1462 |
City of Zagreb | 4 | 25.00 | 0.63–100.00 | 0 | 0 | 0.2850 |
Total | 179 | 6.70 | 3.47–11.71 | 10.06 | 5.96–15.89 | 0.063 |
Risk Factor | Variable | Foxes Examined (N) | Prevalence (%) | OR 1 | CI 95% 2 | p-Value |
---|---|---|---|---|---|---|
County | Zagreb Krapina-Zagorje Sisak-Moslavina Karlovac Požega-Slavonia Međimurje | 53 17 21 26 22 19 | 1.89 11.76 14.29 15.39 4.55 10.53 | reference value 6.93 8.21 9.45 2.48 6.12 | 0.59–81.83 0.80–83.83 0.99–89.46 0.15–41.45 0.52–71.76 | 0.1241 0.0757 0.0501 0.5282 0.1494 |
Sex | male female | 108 67 | 6.48 7.46 | reference value 2.28 | 0.69–7.50 | 0.1746 |
Age | adult juvenile | 62 71 | 1.61 11.27 | reference value 7.75 | 0.94–63.79 | 0.0570 |
Risk Factor | Variable | Foxes Examined (N) | Prevalence (%) | OR 1 | CI 95% 2 | p-Value |
---|---|---|---|---|---|---|
County | Zagreb Krapina-Zagorje Sisak-Moslavina Karlovac Požega-Slavonia Međimurje | 53 17 21 26 22 19 | 4.55 11.32 4.76 25.08 7.69 10.53 | reference value 2.68 1.05 6.30 1.75 2.47 | 0.31–23.68 0.06–17.94 0.70–57.08 0.10–30.59 0.21–29.63 | 0.3750 0.9731 0.1016 0.7015 0.4755 |
Sex | male female | 108 67 | 6.48 7.46 | reference value 2.53 | 0.91–7.01 | 0.0740 |
Age | adult juvenile | 62 71 | 9.86 12.90 | reference value 0.75 | 0.26–2.21 | 0.6037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlak, M.; Prpić, J.; Matei, I.A.; Trninić, K.; Ćurković, S.; Mihaljević, Ž.; Štritof, Z.; Vlahović, K.; Udiljak, Ž.; Jemeršić, L. Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia. Pathogens 2025, 14, 858. https://doi.org/10.3390/pathogens14090858
Pavlak M, Prpić J, Matei IA, Trninić K, Ćurković S, Mihaljević Ž, Štritof Z, Vlahović K, Udiljak Ž, Jemeršić L. Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia. Pathogens. 2025; 14(9):858. https://doi.org/10.3390/pathogens14090858
Chicago/Turabian StylePavlak, Marina, Jelena Prpić, Ioana A. Matei, Krešimir Trninić, Snježana Ćurković, Željko Mihaljević, Zrinka Štritof, Ksenija Vlahović, Žarko Udiljak, and Lorena Jemeršić. 2025. "Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia" Pathogens 14, no. 9: 858. https://doi.org/10.3390/pathogens14090858
APA StylePavlak, M., Prpić, J., Matei, I. A., Trninić, K., Ćurković, S., Mihaljević, Ž., Štritof, Z., Vlahović, K., Udiljak, Ž., & Jemeršić, L. (2025). Epidemiological Significance of the Fox (Vulpes vulpes) in the Spread of Vector-Transmitted Zoonoses in the Area of Northern Croatia. Pathogens, 14(9), 858. https://doi.org/10.3390/pathogens14090858