Mechanistic Models of Virus–Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions
Abstract
1. Introduction
2. Methods
3. Results
3.1. An Overview of the Co-Infection Modeling Landscape
3.2. What Shared Patterns and Assumptions Emerge from the Reviewed Co-Infection Modeling Studies?
3.3. How Do the Models Incorporate Co-Infection Dynamics into Mathematical Models?
3.4. Parameterization Practices in Co-Infection Models: Data Sources, Model Fitting, and Validation
3.5. Analysis of Non-Empirical Interaction Parameters
4. Discussion
4.1. Principal Finding: A Disconnect Between Biological Mechanisms and Model Parameterization
4.2. Explaining the Gaps: Research Biases and Modeling Challenges
4.3. Strengths and Consistent Findings in the Literature
4.4. Limitations of This Review
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pokhrel, V.; Kuntal, B.K.; Mande, S.S. Role and significance of virus–bacteria interactions in disease progression. J. Appl. Microbiol. 2024, 135, lxae130. [Google Scholar] [CrossRef] [PubMed]
- Mochan, E.; Sego, T.J. Mathematical Modeling of the Lethal Synergism of Coinfecting Pathogens in Respiratory Viral Infections: A Review. Microorganisms 2023, 11, 2974. [Google Scholar] [CrossRef]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: Implications for Pandemic Influenza Preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef]
- Patel, A.; Pundkar, A.; Agarwal, A.; Gadkari, C.; Nagpal, A.K.; Kuttan, N. A Comprehensive Review of HIV-Associated Tuberculosis: Clinical Challenges and Advances in Management. Cureus 2024, 16, e68784. [Google Scholar] [CrossRef]
- Pawlowski, A.; Jansson, M.; Sköld, M.; Rottenberg, M.E.; Källenius, G.; Hobman, T.C. Tuberculosis and HIV Co-Infection. PLoS Pathog. 2012, 8, e1002464. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report Geneva; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Lalbiaktluangi, C.; Yadav, M.K.; Singh, P.K.; Singh, A.; Iyer, M.; Vellingiri, B.; Zomuansangi, R.; Zothanpuia; Ram, H. A cooperativity between virus and bacteria during respiratory infections. Front. Microbiol. 2023, 14, 1279159. [Google Scholar] [CrossRef]
- Bosch, A.A.T.M.; Biesbroek, G.; Trzcinski, K.; Sanders, E.A.M.; Bogaert, D.; Hobman, T.C. Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathog. 2013, 9, e1003057. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.; Li, Y.; Yang, L.; Pei, Z.; Poles, M.; Abrams, W.R.; Malamud, D. Human Microbiome and HIV/AIDS. Curr. HIV/AIDS Rep. 2012, 9, 44–51. [Google Scholar] [CrossRef]
- Alizon, S. Co-infection and super-infection models in evolutionary epidemiology. Interface Focus 2013, 3, 20130031. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Papanikolopoulou, A.; Vassiliu, S.; Theodoridou, K.; Nikolopoulou, G.; Sipsas, N.V. COVID-19 and Respiratory Virus Co-Infections: A Systematic Review of the Literature. Viruses 2023, 15, 865. [Google Scholar] [CrossRef]
- Shaw, K.E.; Peterson, J.K.; Jalali, N.; Ratnavale, S.; Alkuzweny, M.; Barbera, C.; Costello, A.; Emerick, L.T.; España, G.F.; Meyer, A.S.; et al. Co-circulating pathogens of humans: A systematic review of mechanistic transmission models. medRxiv 2024, 2024.09.16.24313749. Available online: https://www.medrxiv.org/content/early/2024/09/16/2024.09.16.24313749 (accessed on 10 July 2025).
- Mathew, P.; John, D.; Kurian, J.; Cherian, T.; Jose, J. A Century of Mathematical Epidemiology: A Bibliometric Analysis and Visualization of Research Trends. Cureus 2024, 16, e71001. [Google Scholar] [CrossRef]
- Richard, D.M.; Lipsitch, M. What’s next: Using infectious disease mathematical modelling to address health disparities. Int. J. Epidemiol. 2024, 53, dyad180. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M. Global research trends of World Health Organization’s top eight emerging pathogens. Glob. Health 2017, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Sweileh, W.M. Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Glob. Health 2022, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, A.K.; Maina, M.; Blanchard, A.M.; Daly, J.M.; Dunham, S.P. Understanding the Molecular Interactions Between Influenza A Virus and Streptococcus Proteins in Co-Infection: A Scoping Review. Pathogens 2025, 14, 114. [Google Scholar] [CrossRef]
- Hendricks, M.R.; Lashua, L.P.; Fischer, D.K.; Flitter, B.A.; Eichinger, K.M.; Durbin, J.E.; Sarkar, S.N.; Coyne, C.B.; Empey, K.M.; Bomberger, J.M. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc. Natl. Acad. Sci. USA 2016, 113, 1642–1647. [Google Scholar] [CrossRef]
- Griffiths, E.C.; Pedersen, A.B.; Fenton, A.; Petchey, O.L. The nature and consequences of coinfection in humans. J. Infect. 2011, 63, 200–206. [Google Scholar] [CrossRef]
- Almand, E.A.; Moore, M.D.; Jaykus, L.-A. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses 2017, 9, 58. [Google Scholar] [CrossRef]
- Yano, T.K.; Afrifa-Yamoah, E.; Collins, J.; Mueller, U.; Richardson, S. Mathematical modelling and analysis for the co-infection of viral and bacterial diseases: A systematic review protocol. BMJ Open 2024, 14, e084027. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Wang, C.-L.; Gao, S.; Li, X.-Z.; Martcheva, M. Modeling Syphilis and HIV Coinfection: A Case Study in the USA. Bull. Math. Biol. 2023, 85, 20. [Google Scholar] [CrossRef]
- Das, K.; Chinnathambi, R.; Srinivas, M.; Rihan, F.A. An analysis of time-delay epidemic model for TB, HIV, and AIDS co-infections. Results Control Optim. 2023, 12, 100263. [Google Scholar] [CrossRef]
- Kapitanov, G. A double age-structured model of the co-infection of tuberculosis and HIV. Math. Biosci. Eng. 2015, 12, 23–40. [Google Scholar] [CrossRef]
- Mushayabasa, S.; Bhunu, C. Is HIV infection associated with an increased risk for cholera? Insights from a mathematical model. Biosystems 2012, 109, 203–213. [Google Scholar] [CrossRef]
- Gakkhar, S.; Chavda, N. A dynamical model for HIV–TB co-infection. Appl. Math. Comput. 2012, 218, 9261–9270. [Google Scholar] [CrossRef]
- Bhunu, C.P.; Garira, W.; Mukandavire, Z. Modeling HIV/AIDS and Tuberculosis Coinfection. Bull. Math. Biol. 2009, 71, 1745–1780. [Google Scholar] [CrossRef]
- Naresh, R.; Sharma, D.; Tripathi, A. Modelling the effect of tuberculosis on the spread of HIV infection in a population with density-dependent birth and death rate. Math. Comput. Model. 2009, 50, 1154–1166. [Google Scholar] [CrossRef]
- Roeger, L.-I.W.; Feng, Z.; Castillo-Chávez, C. Modeling TB and HIV co-infections. Math. Biosci. Eng. 2009, 6, 815–837. [Google Scholar] [CrossRef] [PubMed]
- Naresh, R.; Tripathi, A. Modelling and analysis of HIV-TB co-infection in a variable size population. Math. Model. Anal. 2005, 10, 275–286. [Google Scholar] [CrossRef]
- Kirschner, D. Dynamics of Co-infection with M. tuberculosisand HIV-1. Theor. Popul. Biol. 1999, 55, 94–109. [Google Scholar] [CrossRef]
- West, R.W.; Thompson, J.R. Modeling the impact of HIV on the spread of tuberculosis in the United States. Math. Biosci. 1997, 143, 35–60. [Google Scholar] [CrossRef] [PubMed]
- Ojo, M.M.; Peter, O.J.; Goufo, E.F.D.; Nisar, K.S. A mathematical model for the co-dynamics of COVID-19 and tuberculosis. Math. Comput. Simul. 2023, 207, 499–520. [Google Scholar] [CrossRef] [PubMed]
- Mekonen, K.G.; Balcha, S.F.; Obsu, L.L.; Hassen, A.; Carpentieri, B. Mathematical Modeling and Analysis of TB and COVID-19 Coinfection. J. Appl. Math. 2022, 2022, 2449710. [Google Scholar] [CrossRef]
- Mekonen, K.G.; Obsu, L.L. Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis. Heliyon 2022, 8, e11195. [Google Scholar] [CrossRef]
- Teklu, S.W.; Rao, K.P.; Rychtar, J. HIV/AIDS-Pneumonia Codynamics Model Analysis with Vaccination and Treatment. Comput. Math. Methods Med. 2022, 2022, 3105734. [Google Scholar] [CrossRef]
- Torres, M.; Tubay, J.; de Losreyes, A. Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines. Bull. Math. Biol. 2023, 85, 56. [Google Scholar] [CrossRef] [PubMed]
- Seidu, B.; Makinde, O.D.; Seini, I.Y.; Pickering, A. On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity. Discret. Dyn. Nat. Soc. 2023, 2023, 3716235. [Google Scholar] [CrossRef]
- Sánchez, M.S.; Lloyd-Smith, J.O.; Williams, B.G.; Porco, T.C.; Ryan, S.J.; Borgdorff, M.W.; Mansoer, J.; Dye, C.; Getz, W.M. Incongruent HIV and tuberculosis co-dynamics in Kenya: Interacting epidemics monitor each other. Epidemics 2009, 1, 14–20. [Google Scholar] [CrossRef]
- Adeyemo, S.; Sangotola, A.; Korosteleva, O. Modeling Transmission Dynamics of Tuberculosis–HIV Co-Infection in South Africa. Epidemiologia 2023, 4, 408–419. [Google Scholar] [CrossRef]
- Raza, N.; Irum, S.; Niazai, S.; Ullah, M.A.; Alshahrani, M.Y.; Omame, A. A mathematical framework of HIV and TB co-infection dynamics. Sci. Rep. 2025, 15, 11465. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.M.; Carvalho, A.R. New findings on the dynamics of HIV and TB coinfection models. Appl. Math. Comput. 2014, 242, 36–46. [Google Scholar] [CrossRef]
- Zhang, L.; Rahman, M.U.; Arfan, M.; Ali, A. Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel. Results Phys. 2021, 28, 104559. [Google Scholar] [CrossRef]
- Aga, B.Z.; Keno, T.D.; Terfasa, D.E.; Berhe, H.W. Pneumonia and COVID-19 co-infection modeling with optimal control analysis. Front. Appl. Math. Stat. 2024, 9, 1286914. [Google Scholar] [CrossRef]
- Bowong, S.; Kurths, J. Modelling Tuberculosis and Hepatitis B Co-infections. Math. Model. Nat. Phenom. 2010, 5, 196–242. [Google Scholar] [CrossRef]
- Omame, A.; Okuonghae, D.; Umana, R.; Inyama, S. Analysis of a co-infection model for HPV-TB. Appl. Math. Model. 2020, 77, 881–901. [Google Scholar] [CrossRef]
- David, J.F.; Lima, V.D.; Zhu, J.; Brauer, F. A co-interaction model of HIV and syphilis infection among gay, bisexual and other men who have sex with men. Infect. Dis. Model. 2020, 5, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-W.; Levin, B.R.; Klugman, K.P.; Metzger, D.W. The Anticipated Severity of a “1918-Like” Influenza Pandemic in Contemporary Populations: The Contribution of Antibacterial Interventions. PLoS ONE 2012, 7, e29219. [Google Scholar] [CrossRef]
- Said, M.; Roh, Y.; Jung, I.H. Mathematical modeling and analysis of leptospirosis–COVID-19 co-infection with real data. Eur. Phys. J. Plus 2024, 139, 1030. [Google Scholar] [CrossRef]
- Majumder, M.; Tiwari, P.K.; Pal, S. Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: Optimal control with awareness and treatment. Nonlinear Dyn. 2022, 109, 143–176. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-K.; Huo, H.-F.; Xiang, H. Optimal control of TB transmission based on an age structured HIV-TB co-infection model. J. Frankl. Inst. 2022, 359, 4116–4137. [Google Scholar] [CrossRef]
- Shah, N.H.; Sheoran, N.; Shah, Y. Dynamics of HIV-TB Co-Infection Model. Axioms 2020, 9, 29. [Google Scholar] [CrossRef]
- Silva, C.J.; Torres, D.F.M. A TB-HIV/AIDS coinfection model and optimal control treatment. Discret. Contin. Dyn. Syst. A 2015, 35, 4639–4663. [Google Scholar] [CrossRef]
- Silva, C.J.; Torres, D.F.M. Modeling TB-HIV Syndemic and Treatment. J. Appl. Math. 2014, 2014, 248407. [Google Scholar] [CrossRef]
- Handel, A.; Longini, I.M.; Antia, R. Intervention strategies for an influenza pandemic taking into account secondary bacterial infections. Epidemics 2009, 1, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Hezam, I.M.; Foul, A.; Alrasheedi, A. A dynamic optimal control model for COVID-19 and cholera co-infection in Yemen. Adv. Differ. Equ. 2021, 2021, 108. [Google Scholar] [CrossRef]
- Goudiaby, M.; Gning, L.; Diagne, M.; Dia, B.M.; Rwezaura, H.; Tchuenche, J. Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model. Inform. Med. Unlocked 2022, 28, 100849. [Google Scholar] [CrossRef]
- Mekonen, K.G.; Obsu, L.L.; Habtemichael, T.G. Optimal control analysis for the coinfection of COVID-19 and TB. Arab. J. Basic Appl. Sci. 2022, 29, 175–192. [Google Scholar] [CrossRef]
- Otunuga, O.M. Analysis of the impact of treatments on HIV/AIDS and Tuberculosis co-infected population under random perturbations. Infect. Dis. Model. 2024, 9, 27–55. [Google Scholar] [CrossRef]
- Fatmawati; Tasman, H. Optimal control of HIV resistance and tuberculosis co-infection using treatment intervention. Asian Pac. J. Trop. Dis. 2017, 7, 366–373. [Google Scholar] [CrossRef]
- Biswas, M.H.A.; Samad, S.A.; Parvin, T.; Islam, M.T.; Supriatna, A.K. Optimal Control Strategy to Reduce the Infection of Pandemic HIV Associated with Tuberculosis. Commun. Biomath. Sci. 2022, 5, 20–39. [Google Scholar] [CrossRef]
- Cheneke, K.R.; Rao, K.P.; Edessa, G.K.; Al Basir, F. Modeling and Analysis of HIV and Cholera Direct Transmission with Optimal Control. Discret. Dyn. Nat. Soc. 2022, 2022, 5460337. [Google Scholar] [CrossRef]
- Awoke, T.D.; Kassa, S.M. Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification. Processes 2018, 6, 48. [Google Scholar] [CrossRef]
- Agusto, F.; Adekunle, A. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. Biosystems 2014, 119, 20–44. [Google Scholar] [CrossRef]
- Nwankwo, A.; Okuonghae, D. Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis. Bull. Math. Biol. 2018, 80, 437–492. [Google Scholar] [CrossRef] [PubMed]
- Ayele, T.K.; Goufo, E.F.D.; Mugisha, S.; Asamoah, J.K.K. Co-infection mathematical model for HIV/AIDS and tuberculosis with optimal control in Ethiopia. PLoS ONE 2024, 19, e0312539. [Google Scholar] [CrossRef] [PubMed]
- Teklu, S.W.; Mekonnen, T.T.; Huang, D. HIV/AIDS-Pneumonia Coinfection Model with Treatment at Each Infection Stage: Mathematical Analysis and Numerical Simulation. J. Appl. Math. 2021, 2021, 5444605. [Google Scholar] [CrossRef]
- Teklu, S.W.; Terefe, B.B.; Mamo, D.K.; Abebaw, Y.F. Optimal control strategies on HIV/AIDS and pneumonia co-infection with mathematical modelling approach. J. Biol. Dyn. 2024, 18, 2288873. [Google Scholar] [CrossRef]
- Singh, R.; Rehman, A.U.; Ahmed, T.; Ahmad, K.; Mahajan, S.; Pandit, A.K.; Abualigah, L.; Gandomi, A.H. Mathematical modelling and analysis of COVID-19 and tuberculosis transmission dynamics. Informatics Med. Unlocked 2023, 38, 101235. [Google Scholar] [CrossRef]
- Omale, D.; Ojih, P.B.; Atokolo, W.; Omale, A.J.; Bolaji, B. Mathematical model for transmission dynamics of HIV and tuberculosis co-infection in Kogi State, Nigeria. J. Math. Comput. Sci. 2021, 11, 5580–5613. [Google Scholar] [CrossRef]
- Nwajeri, U.; Panle, A.; Omame, A.; Obi, M.C.; Onyenegecha, C. On the fractional order model for HPV and Syphilis using non–singular kernel. Results Phys. 2022, 37, 105463. [Google Scholar] [CrossRef]
- Teklu, S.W.; Russomando, G. Investigating the Effects of Intervention Strategies on Pneumonia and HIV/AIDS Coinfection Model. BioMed Res. Int. 2023, 2023, 5778209. [Google Scholar] [CrossRef]
- Mallela, A.; Lenhart, S.; Vaidya, N.K. HIV–TB co-infection treatment: Modeling and optimal control theory perspectives. J. Comput. Appl. Math. 2016, 307, 143–161. [Google Scholar] [CrossRef]
- Long, E.F.; Vaidya, N.K.; Brandeau, M.L. Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics. Oper. Res. 2008, 56, 1366–1381. [Google Scholar] [CrossRef]
- Champredon, D.; Cameron, C.E.; Smieja, M.; Dushoff, J. Epidemiological impact of a syphilis vaccine: A simulation study. Epidemiol. Infect. 2016, 144, 3244–3252. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jain, S. Assessing the effects of treatment in HIV-TB co-infection model. Eur. Phys. J. Plus 2018, 133, 294. [Google Scholar] [CrossRef]
- Tanvi; Aggarwal, R. Dynamics of HIV-TB co-infection with detection as optimal intervention strategy. Int. J. Non-Linear Mech. 2020, 120, 103388. [Google Scholar] [CrossRef]
- Bolaji, B.; Onoja, T.; Agbata, C.; Omede, B.I.; Odionyenma, U.B. Dynamical analysis of HIV-TB co-infection transmission model in the presence of treatment for TB. Bull. Biomath. 2024, 2, 21–56. [Google Scholar] [CrossRef]
- Kanyiri, C.W.; Luboobi, L.; Kimathi, M. Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral Resistance. Comput. Math. Methods Med. 2020, 2020, 5984095. [Google Scholar] [CrossRef]
- Sharomi, O.; Podder, C.N.; Gumel, A.B.; Song, B. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math. Biosci. Eng. 2008, 5, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Ghosh, M.; Bhatia, S.S. The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: A mathematical study. J. Biol. Phys. 2014, 40, 139–166. [Google Scholar] [CrossRef]
- Teklu, S.W.; Abebaw, Y.F.; Terefe, B.B.; Mamo, D.K. HIV/AIDS and TB co-infection deterministic model bifurcation and optimal control analysis. Inform. Med. Unlocked 2023, 41, 101328. [Google Scholar] [CrossRef]
- Rashid, S.; Hamidi, S.Z.; Raza, M.A.; Shafique, R.; Alsubaie, A.S.; Elagan, S.K. Robustness and exploration between the interplay of the nonlinear co-dynamics HIV/AIDS and pneumonia model via fractional differential operators and a probabilistic approach. Sci. Rep. 2024, 14, 16922. [Google Scholar] [CrossRef]
- Rashid, S.; Hamidi, S.Z.; Akram, S.; Raza, M.A.; Elagan, S.K.; Alsubei, B.M.T. Theoretical and mathematical codynamics of nonlinear tuberculosis and COVID-19 model pertaining to fractional calculus and probabilistic approach. Sci. Rep. 2024, 14, 8827. [Google Scholar] [CrossRef] [PubMed]
- Tanvi; Aggarwal, R.; Kovacs, T. Assessing the Effects of Holling Type-II Treatment Rate on HIV-TB Co-infection. Acta Biotheor. 2021, 69, 1–35. [Google Scholar] [CrossRef]
- Elaiw, A.M.; Al Agha, A.D. Analysis of the In-Host Dynamics of Tuberculosis and SARS-CoV-2 Coinfection. Mathematics 2023, 11, 1104. [Google Scholar] [CrossRef]
- Kabanikhin, S.; Krivorotko, O.; Neverov, A.; Kaminskiy, G.; Semenova, O. Identification of the Mathematical Model of Tuberculosis and HIV Co-Infection Dynamics. Mathematics 2024, 12, 3636. [Google Scholar] [CrossRef]
- Mushayabasa, S.; Tchuenche, J.; Bhunu, C.; Ngarakana-Gwasira, E. Modeling gonorrhea and HIV co-interaction. Biosystems 2011, 103, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, Y.; Nagappa, B.; Sharma, N.; Basu, S.; Chopra, K.K. COVID-19 and tuberculosis: A mathematical model based forecasting in Delhi, India. Indian J. Tuberc. 2020, 67, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Raj, Y.A. A fractional order HIV-TB co-infection model in the presence of exogenous reinfection and recurrent TB. Nonlinear Dyn. 2021, 104, 4701–4725. [Google Scholar] [CrossRef]
- Otiende, V.; Achia, T.; Mwambi, H. Bayesian modeling of spatiotemporal patterns of TB-HIV co-infection risk in Kenya. BMC Infect. Dis. 2019, 19, 902. [Google Scholar] [CrossRef]
- Tanvi; Aggarwal, R. Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings. Chaos Solitons Fractals 2020, 140, 110138. [Google Scholar] [CrossRef]
- Arduin, H.; de Cellès, M.D.; Guillemot, D.; Watier, L.; Opatowski, L. An agent-based model simulation of influenza interactions at the host level: Insight into the influenza-related burden of pneumococcal infections. BMC Infect. Dis. 2017, 17, 382. [Google Scholar] [CrossRef]
- Migliori, G.B.; Thong, P.M.; Akkerman, O.; Alffenaar, J.-W.; Álvarez-Navascués, F.; Assao-Neino, M.M.; Bernard, P.V.; Biala, J.S.; Blanc, F.-X.; Bogorodskaya, E.M.; et al. Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April. Emerg. Infect. Dis. 2020, 26, 2709–2712. [Google Scholar] [CrossRef]
- Toschke, A.M.; Arenz, S.; von Kries, R.; Puppe, W.; A I Weigl, J.; Höhle, M.; Heininger, U. No temporal association between influenza outbreaks and invasive pneumococcal infections. Arch. Dis. Child. 2008, 93, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.D.; Olsen, R.J.; A LaCasse, R.; Safronetz, D.; Ashraf, M.; Porter, A.R.; Braughton, K.R.; Feldmann, F.; Clifton, D.R.; Kash, J.C.; et al. Seasonal H3N2 influenza A virus fails to enhance Staphylococcus aureus co-infection in a non-human primate respiratory tract infection model. Virulence 2013, 4, 707–715. [Google Scholar] [CrossRef]
- Shrestha, S.; Foxman, B.; Weinberger, D.M.; Steiner, C.; Viboud, C.; Rohani, P. Identifying the Interaction Between Influenza and Pneumococcal Pneumonia Using Incidence Data. Sci. Transl. Med. 2013, 5, 191ra84. [Google Scholar] [CrossRef]
- Shrestha, S.; Foxman, B.; Berus, J.; van Panhuis, W.G.; Steiner, C.; Viboud, C.; Rohani, P. The role of influenza in the epidemiology of pneumonia. Sci. Rep. 2015, 5, 15314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, M.; Jiang, Y.; Zou, X. Data-Driven Mathematical Modeling and Dynamical Analysis for SARS-CoV-2 Coinfection with Bacteria. Int. J. Bifurc. Chaos 2021, 31, 2150163. [Google Scholar] [CrossRef]
- Marino, S.; Hogue, I.B.; Ray, C.J.; Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 2008, 254, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Hazelbag, C.M.; Dushoff, J.; Dominic, E.M.; Mthombothi, Z.E.; Delva, W.; Kouyos, R.D. Calibration of individual-based models to epidemiological data: A systematic review. PLoS Comput. Biol. 2020, 16, e1007893. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Salazar, M.; LaBeaud, A.D. Team Science and Infectious Disease Work: Exploring Challenges and Opportunities; Springer: Cham, Switzerland, 2024; pp. 67–82. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, L. A Non-Linear Model for Censored and Mismeasured Time Varying Covariates in Survival Models, with Applications in Human Immunodeficiency Virus and Acquired Immune Deficiency Syndrome Studies. J. R. Stat. Soc. Ser. C Applied Stat. 2018, 67, 1437–1450. [Google Scholar] [CrossRef]
- Croucher, N.J. Immune interface interference vaccines: An evolution-informed approach to anti-bacterial vaccine design. Microb. Biotechnol. 2024, 17, e14446. [Google Scholar] [CrossRef] [PubMed]
Study Objectives | Studies |
---|---|
Modeling novel disease pairs to assess co-infection dynamics and their impact | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51] |
Performing intervention analysis and identifying optimal control measures | [24,29,38,40,43,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] |
Assessing the impact of specific factors | [25,30,34,52,61,65,81,85,86,87] |
Exploring within-host and immune system dynamics | [33,88] |
Forecasting or predicting future disease incidence and outcomes | [50,89,90,91] |
Disease Pair Modeled | Number of Compartments | Number of Studies | References |
---|---|---|---|
HIV/AIDS + TB | 4–21 (majority ranging in between 8 and 14 with few exceptions) | 40 | [25,26,28,29,30,31,32,33,34,39,40,41,42,43,44,45,53,54,55,56,61,62,63,65,66,68,72,75,76,78,79,80,82,83,84,87,89,92,93,94] |
TB + COVID-19 | 4–10 | 9 | [35,36,37,59,60,71,86,88,91] |
HIV + Pneumonia | 9–12 | 5 | [38,69,70,74,85] |
HIV + Syphilis | 4–15 | 4 | [24,49,67,77] |
Influenza + Pneumoniae (or other secondary bacteria) | 8–11 | 4 | [50,57,81,95] |
HIV + Cholera | 5, 6 | 2 | [27,64] |
Leptospirosis + COVID-19 | 9 (host) + 2 (vector) | 1 | [51] |
Pneumonia + COVID-19 | 5 | 1 | [46] |
HIV + Gonorrhea | 8 | 1 | [90] |
HPV + TB | 24 | 1 | [48] |
TB + Hepatitis B | 13 | 1 | [47] |
Cholera + COVID-19 | 14 (host) and 1 (bacteria) | 1 | [58] |
TB + COVID-19 + HIV | 15 | 1 | [52] |
HPV + Syphilis | 11 | 1 | [73] |
Disease Pair | Studies | Control Measures |
---|---|---|
HIV/AIDS + TB | [29,40,52,53,55,56,62,63,65,66,68,72,75,78,80,82,84] | prevention efforts, case findings, treatments, awareness campaigns, behavior modifications |
COVID-19 + TB | [37,59,60,71] | prevention efforts, better treatment, vaccination, quarantine |
HIV/AIDS + Pneumonia | [38,70] | vaccination, treatment |
Influenza + Pneumonia | [57,81] | social distancing, vaccination, antiviral resistance management |
COVID-19 + Pneumonia | [46] | vaccination, quarantine |
HIV + Cholera | [64] | cholera prevention control (vaccination), HIV prevention control, immunity control |
COVID-19 + Cholera | [58] | social distancing, quarantine and isolations, distribution of COVID-19 test kits, distribution of chlorine water tablets |
HPV + TB | [48] | treatment, condom use |
HIV + Syphilis | [67] | syphilis treatment |
Parameters Representing Interactions | Common Modeling Approach | Range of Assumed Values * | Number of Studies Using this Approach |
---|---|---|---|
Altered Transmission | Multiplicative factor (σ) applied to FOI | σ ∈ [1, 3.6]; some assuming higher values like 7.59 and 106.45 | 52 (72%) |
Altered Mortality | Distinct death rate (δ) for co-infected class | δ ∈ [0.001, 0.75] | 58 (81%) |
Altered Infectiousness | Multiplicative factor (ε) for co-infected class | ε ∈ [0.02, 3.5] | 41 (57%) |
Altered Disease Progression | Distinct parameter and their values on progression from different compartments | Varied | 56 (78%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, M.; Singh, B.K.; Azad, R.K. Mechanistic Models of Virus–Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions. Pathogens 2025, 14, 830. https://doi.org/10.3390/pathogens14080830
Dhakal M, Singh BK, Azad RK. Mechanistic Models of Virus–Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions. Pathogens. 2025; 14(8):830. https://doi.org/10.3390/pathogens14080830
Chicago/Turabian StyleDhakal, Mani, Brajendra K. Singh, and Rajeev K. Azad. 2025. "Mechanistic Models of Virus–Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions" Pathogens 14, no. 8: 830. https://doi.org/10.3390/pathogens14080830
APA StyleDhakal, M., Singh, B. K., & Azad, R. K. (2025). Mechanistic Models of Virus–Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions. Pathogens, 14(8), 830. https://doi.org/10.3390/pathogens14080830