Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statements and Study Design
2.2. ELISA Screening Test for Antibodies to Mycobacterium avium ssp. paratuberculosis
2.3. Blood Serum Collection, Oxidative Stress, and Apoptosis Biomarkers
2.4. Biological Sample Collection and Histopathological Analysis
2.5. Statistical Analysis
3. Results
3.1. Macroscopic and Histopathological Findings
3.2. Blood Serum Oxidative Stress and Apoptosis Biomarker
3.3. Oxidative Stress and Apoptosis Biomarkers in Intestinal Mucosa and Mesenteric Lymph Nodes
3.4. Correlation Among Serum, Intestinal Mucosa, and Mesenteric Lymph Nodes Stress and Apoptosis Biomarkers of Infected Goats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAP | Mycobacterium avium subspecies paratuberculosis |
MDA | Malondialdehyde |
GST | Glutathione S-transferase |
GPX | Glutathione peroxidase |
SOD | Superoxide dismutase |
GSR | Glutathione reductase |
PCR | Polymerase chain reaction |
IFN-γ | Interferon gamma |
IL | Interleukin |
HE | Hematoxylin–eosin |
ZN | Ziehl–Neelsen |
References
- Garcia, A.B.; Shalloo, L. Invited Review: The Economic Impact and Control of Paratuberculosis in Cattle. J. Dairy Sci. 2015, 98, 5019–5039. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Aitken, J.; Hamblin, H.; Collins, M.; Borody, T.J. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium Subspecies Paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Navarro León, A.I.; Muñoz, M.; Iglesias, N.; Blanco-Vázquez, C.; Balseiro, A.; Milhano Santos, F.; Ciordia, S.; Corrales, F.J.; Iglesias, T.; Casais, R. Proteomic Serum Profiling of Holstein Friesian Cows with Different Pathological Forms of Bovine Paratuberculosis Reveals Changes in the Acute-Phase Response and Lipid Metabolism. J. Proteome Res. 2024, 23, 2762–2779. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S.; Toft, N. A Review of Prevalences of Paratuberculosis in Farmed Animals in Europe. Prev. Vet. Med. 2009, 88, 1–14. [Google Scholar] [CrossRef]
- Rossi, G.; Grohn, Y.T.; Schukken, Y.H.; Smith, R.L. The Effect of Mycobacterium avium ssp. Paratuberculosis Infection on Clinical Mastitis Occurrence in Dairy Cows. J. Dairy Sci. 2017, 100, 7446–7454. [Google Scholar] [CrossRef]
- Sukumar, B.; Gunaseelan, L.; Porteen, K.; Prabu, K. Goat Milk as a Non-Invasive Sample for Confirmation of Mycobacterium avium Subspecies Paratuberculosis by IS900 PCR. J. Adv. Vet. Anim. Res. 2014, 1, 136–139. [Google Scholar] [CrossRef]
- Chaubey, K.K.; Singh, S.V.; Gupta, S.; Singh, M.; Sohal, J.S.; Kumar, N.; Singh, M.K.; Bhatia, A.K.; Dhama, K. Mycobacterium avium Subspecies Paratuberculosis—An Important Food Borne Pathogen of High Public Health Significance with Special Reference to India: An Update. Vet. Q. 2017, 37, 282–299. [Google Scholar] [CrossRef]
- Ott, S.L.; Wells, S.J.; Wagner, B.A. Herd-Level Economic Losses Associated with Johne’s Disease on US Dairy Operations. Prev. Vet. Med. 1999, 40, 179–192. [Google Scholar] [CrossRef]
- Verin, R.; Perroni, M.; Rossi, G.; De Grossi, L.; Botta, R.; De Sanctis, B.; Rocca, S.; Cubeddu, T.; Crosby-Durrani, H.; Taccini, E. Paratuberculosis in Sheep: Histochemical, Immunohistochemical and in Situ Hybridization Evidence of in Utero and Milk Transmission. Res. Vet. Sci. 2016, 106, 173–179. [Google Scholar] [CrossRef]
- Hosseiniporgham, S.; Cubeddu, T.; Rocca, S.; Sechi, L.A. Identification of Mycobacterium avium Subsp. Paratuberculosis (MAP) in Sheep Milk, a Zoonotic Problem. Microorganisms 2020, 8, 1264. [Google Scholar] [CrossRef]
- Singh, M.; Gupta, S.; Chaubey, K.K.; Singh, S.V.; Sohal, J.S. Profiling of Mycobacterium avium Subspecies Paratuberculosis in the Milk of Lactating Goats Using Antigen-Antibody Based Assays. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Juste, R.A.; Geijo, M.V.; Elguezabal, N.; Sevilla, I.A.; Alonso-Hearn, M.; Garrido, J.M. Paratuberculosis Vaccination Specific and Non-Specific Effects on Cattle Lifespan. Vaccine 2021, 39, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Kalis, C.H.J.; Barkema, H.W.; Hesselink, J.W.; Van Maanen, C.; Collins, M.T. Evaluation of Two Absorbed Enzyme-Linked Immunosorbent Assays and a Complement Fixation Test as Replacements for Fecal Culture in the Detection of Cows Shedding Mycobacterium avium Subspecies Paratuberculosis. J. Vet. Diagn. Investig. 2002, 14, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.H.; Buergelt, C. Preclinical and Clinical Manifestations of Paratuberculosis (Including Pathology). Vet. Clin. N. Am. Food Anim. Pract. 1996, 12, 345–356. [Google Scholar] [CrossRef]
- Şababoğlu, E.; Türütoğlu, H. Ruminantlarda Mycobacterium avium Subspecies Paratuberculosis Enfeksiyonunun İmmunolojik Özellikleri. Etlik Vet. Mikrobiyoloji Derg. 2017, 28, 109–114. [Google Scholar] [CrossRef]
- Davis, J.M.; Ramakrishnan, L. The Role of the Granuloma in Expansion and Dissemination of Early Tuberculous Infection. Cell 2009, 136, 37–49. [Google Scholar] [CrossRef]
- Rossi, G.; Nigro, G.; Tattoli, I.; Vincenzetti, S.; Mariani, P.; Magi, G.E.; Renzoni, G.; Taccini, E.; Bernardini, M.L. Adhesion Molecules and Cytokine Profile in Ileal Tissue of Sheep Infected with Mycobacterium avium Subsp. Paratuberculosis. Microbes Infect. 2009, 11, 698–706. [Google Scholar] [CrossRef]
- Rathnaiah, G.; Zinniel, D.K.; Bannantine, J.P.; Stabel, J.R.; Gröhn, Y.T.; Collins, M.T.; Barletta, R.G. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium Subsp. Paratuberculosis, the Etiologic Agent of Johne’s Disease. Front. Vet. Sci. 2017, 4, 187. [Google Scholar] [CrossRef]
- Tanaka, S.; Sato, M.; Onitsuka, T.; Kamata, H.; Yokomizo, Y. Inflammatory Cytokine Gene Expression in Different Types of Granulomatous Lesions during Asymptomatic Stages of Bovine Paratuberculosis. Vet. Pathol. 2005, 42, 579–588. [Google Scholar] [CrossRef]
- Kabara, E.; Coussens, P.M. Infection of Primary Bovine Macrophages with Mycobacterium avium Subspecies Paratuberculosis Suppresses Host Cell Apoptosis. Front. Microbiol. 2012, 3, 215. [Google Scholar] [CrossRef]
- Elliott, M.R.; Ravichandran, K.S. Clearance of Apoptotic Cells: Implications in Health and Disease. J. Cell Biol. 2010, 189, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Qasem, A.; Abdel-Aty, A.; Abu-Suwa, H.; Naser, S.A. Oxidative Stress Due to Mycobacterium avium Subspecies Paratuberculosis (MAP) Infection Upregulates Selenium-Dependent GPx Activity. Gut Pathog. 2016, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Çenesiz, S. The Role of Oxidant and Antioxidant Parameters in the Infectious Diseases: A Systematic Literature Review. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 849–858. [Google Scholar] [CrossRef]
- Dörtbudak, M.; Sağlam, Y.S.; Yıldırım, S.; Timurkan, M.Ö. Examination of Adenoviruses with Molecular and Pathological Methods in Sheep Pneumonia Cases. Rev. MVZ Cordoba 2022, 27, e2738. [Google Scholar] [CrossRef]
- Houben, E.N.; Nguyen, L.; Pieters, J. Interaction of Pathogenic Mycobacteria with the Host Immune System. Curr. Opin. Microbiol. 2006, 9, 76–85. [Google Scholar] [CrossRef]
- Eckelt, E.; Meißner, T.; Meens, J.; Laarmann, K.; Nerlich, A.; Jarek, M.; Weiss, S.; Gerlach, G.-F.; Goethe, R. FurA Contributes to the Oxidative Stress Response Regulation of Mycobacterium avium ssp. Paratuberculosis. Front. Microbiol. 2015, 6, 16. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef]
- Kalyanaraman, B. Teaching the Basics of Redox Biology to Medical and Graduate Students: Oxidants, Antioxidants and Disease Mechanisms. Redox Biol. 2013, 1, 244–257. [Google Scholar] [CrossRef]
- Desantis, S.; Galosi, L.; Santamaria, N.; Roncarati, A.; Biagini, L.; Rossi, G. Modulation of Morphology and Glycan Composition of Mucins in Farmed Guinea Fowl (Numida meleagris) Intestine by the Multi-Strain Probiotic Slab51®. Animals 2021, 11, 495. [Google Scholar] [CrossRef]
- Harris, N.B.; Barletta, R.G. Mycobacterium avium subsp. Paratuberculosisin Veterinary Medicine. Clin. Microbiol. Rev. 2001, 14, 489–512. [Google Scholar] [CrossRef]
- Dörtbudak, M.B.; Öztürk, M. Pathological Investigation of Double-Stranded DNA Breaks and DNA Oxidation in Natural Infection with Mycobacterium avium Subspecies Paratuberculosis in Goats. Rev. Cient. Fac. Vet. 2024, 34, 6. [Google Scholar] [CrossRef]
- Sweeney, R.W.; Collins, M.T.; Koets, A.P.; McGuirk, S.M.; Roussel, A.J. Paratuberculosis (Johne’s Disease) in Cattle and Other Susceptible Species. J. Vet. Intern. Med. 2012, 26, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Çenesiz, S.; Şahin, B.; Kılıçoğlu, Y.; Yılmaz, V.; Akpınar, R.K. Investigation of Oxidative Stress Parameters in Cattle Infected with Mycobacterium avium subsp. Paratuberculosis. Vet. Sci. Pract. 2024, 19, 140–147. [Google Scholar] [CrossRef]
- Raghavan, S.; Subramaniyam, G.; Shanmugam, N. Proinflammatory Effects of Malondialdehyde in Lymphocytes. J. Leukoc. Biol. 2012, 92, 1055–1067. [Google Scholar] [CrossRef]
- Lei, X.G.; Zhu, J.-H.; Cheng, W.-H.; Bao, Y.; Ho, Y.-S.; Reddi, A.R.; Holmgren, A.; Arnér, E.S.J. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol. Rev. 2016, 96, 307–364. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Balikci, E.; Gurdogan, F. Some Biochemical Parameters and Oxidative Stress Biomarkers in Sheep with Paratuberculosis. Med. Weter. 2015, 71, 679–682. [Google Scholar]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative Stress, Antioxidants, and Animal Function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The Antioxidant Glutathione. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 109–141. [Google Scholar]
- Franco, R.; Cidlowski, J.A. Apoptosis and Glutathione: Beyond an Antioxidant. Cell Death Differ. 2009, 16, 1303–1314. [Google Scholar] [CrossRef]
- Temel, Y.; Taher, S.S.M.; Hamza, M.A.; Shafeeq, İ.H.; Koçyiğit, Ü.M.; Çiftçi, M. Investigation of the Inhibition Effects of Some Metal Ions on Glutathione Reductase Enzyme From Japanese Quail (Coturnix coturnix japonica) Liver. Cumhur. Sci. J. 2018, 39, 679–687. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Koets, A.P.; Eda, S.; Sreevatsan, S. The within Host Dynamics of Mycobacterium avium ssp. Paratuberculosis Infection in Cattle: Where Time and Place Matter. Vet. Res. 2015, 46, 61. [Google Scholar] [CrossRef]
- Chatterjee, S. Chapter Two—Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 35–58. ISBN 978-0-12-803269-5. [Google Scholar]
- Choudhary, G.S.; Al-harbi, S.; Almasan, A. Caspase-3 Activation Is a Critical Determinant of Genotoxic Stress-Induced Apoptosis. In Apoptosis and Cancer; Mor, G., Alvero, A.B., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1219, pp. 1–9. ISBN 978-1-4939-1660-3. [Google Scholar]
- Lorente, L.; Martín, M.M.; Ferreres, J.; Solé-Violán, J.; Labarta, L.; Díaz, C.; Jiménez, A.; Borreguero-León, J.M. Serum Caspase 3 Levels Are Associated with Early Mortality in Severe Septic Patients. J. Crit. Care 2016, 34, 103–106. [Google Scholar] [CrossRef]
- Adekambi, T.; Ibegbu, C.C.; Cagle, S.; Ray, S.M.; Rengarajan, J. High Frequencies of Caspase-3 Expressing Mycobacterium Tuberculosis-Specific CD4+ T Cells Are Associated with Active Tuberculosis. Front. Immunol. 2018, 9, 1481. [Google Scholar] [CrossRef]
- De Matteis, G.; Scatà, M.C.; Zampieri, M.; Grandoni, F.; Elnaggar, M.M.; Schiavo, L.; Cappelli, G.; Cagiola, M.; De Carlo, E.; Davis, W.C. Flow Cytometric Detection of IFN-γ Production and Caspase-3 Activation in CD4+ T Lymphocytes to Discriminate between Healthy and Mycobacterium Bovis Naturally Infected Water Buffaloes. Tuberculosis 2023, 139, 102327. [Google Scholar] [CrossRef]
- Alhendi, A.; Naser, S.A. The Dual Role of Interleukin-6 in Crohn’s Disease Pathophysiology. Front. Immunol. 2023, 14, 1295230. [Google Scholar] [CrossRef]
- Hailat, N.Q.; Hananeh, W.; Metekia, A.S.; Stabel, J.R.; Al-Majali, A.; Lafi, S. Pathology of Subclinical Paratuberculosis (Johne’s Disease) in Awassi Sheep with Reference to Its Occurrence in Jordan. Vet. Med. 2010, 55, 590–602. [Google Scholar] [CrossRef]
- Krüger, C.; Köhler, H.; Liebler-Tenorio, E.M. Cellular Composition of Granulomatous Lesions in Gut-Associated Lymphoid Tissues of Goats during the First Year after Experimental Infection with Mycobacterium avium subsp. Paratuberculosis. Vet. Immunol. Immunopathol. 2015, 163, 33–45. [Google Scholar] [CrossRef]
- Derakhshandeh, A.; Namazi, F.; Khatamsaz, E.; Eraghi, V.; Hemati, Z. Goat Paratuberculosis in Shiraz: Histopathological and Molecular Approaches. Vet. Res. Forum 2018, 9, 253. [Google Scholar]
Catalog N. | Sensitivity | Detection Range | |
---|---|---|---|
MDA | MBS265688 | 0.5 nmol/mL | 1.56–100 nmol/mL |
GSR | MBS9310895 | 0.62 ng/mL | 1.56–100 ng/mL |
GST | MBS736956 | 0.056 ng/mL | 0.16–10 ng/mL |
GPX1 | MBS735071 | 0.26 ng/ml | 0.5–180 ng/ml |
SOD | MBS8819950 | 0.066 U/mL | 0.16–10 U/mL |
Caspase-3 | MBS737368 | 0.1 ng/mL | 2.5–50 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, M.; Dortbudak, M.B.; Bekmez, B.; Biagini, L.; Altuğ, N.; Rossi, G.; Ozturk, Y.; Di Cerbo, A. Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis. Pathogens 2025, 14, 593. https://doi.org/10.3390/pathogens14060593
Ozturk M, Dortbudak MB, Bekmez B, Biagini L, Altuğ N, Rossi G, Ozturk Y, Di Cerbo A. Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis. Pathogens. 2025; 14(6):593. https://doi.org/10.3390/pathogens14060593
Chicago/Turabian StyleOzturk, Merve, Muhammet Bahaeddin Dortbudak, Bayram Bekmez, Lucia Biagini, Nuri Altuğ, Giacomo Rossi, Yasin Ozturk, and Alessandro Di Cerbo. 2025. "Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis" Pathogens 14, no. 6: 593. https://doi.org/10.3390/pathogens14060593
APA StyleOzturk, M., Dortbudak, M. B., Bekmez, B., Biagini, L., Altuğ, N., Rossi, G., Ozturk, Y., & Di Cerbo, A. (2025). Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis. Pathogens, 14(6), 593. https://doi.org/10.3390/pathogens14060593