Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance and Mortality in a Tertiary Hospital in Mexico: A Retrospective Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Data Collected on Neonates
2.3. Identification of Microorganisms and Antimicrobial Resistance
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Result
3.1. Characteristics of Neonates with Sepsis Included in This Study
3.2. Microorganisms Isolated from Early- and Late-Onset Neonatal Sepsis
3.3. Antimicrobial Resistance of Microorganisms Isolated from Neonates with Sepsis
3.4. Epidemiologic, Clinical, and Paraclinical Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance or Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wynn, J.L.; Wong, H.R.; Shanley, T.P.; Bizzarro, M.J.; Saiman, L.; Polin, R.A. Time for a neonatal–specific consensus definition for sepsis. Pediatr. Crit. Care Med. 2014, 15, 523. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of paediatric and neonatal sepsis: A systematic review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Weber, M.A.; López-Candiani, C.; Arredondo-García, J.L.; Gutiérrez-Castrellón, P.; Sánchez-Arriaga, F. Neonatal sepsis morbidity and mortality in a tertiary care hospital. Salud Publica Mex 2003, 45, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef]
- Benirschke, K. Routes and types of infection in the fetus and the newborn. AMA J. Dis. Child. 1960, 99, 714–721. [Google Scholar] [CrossRef]
- Bizzarro, M.J.; Raskind, C.; Baltimore, R.S.; Gallagher, P.G. Seventy-five years of neonatal sepsis at Yale: 1928-2003. Pediatrics 2005, 116, 595–602. [Google Scholar] [CrossRef]
- Kuhn, P.; Dheu, C.; Bolender, C.; Chognot, D.; Keller, L.; Demil, H.; Donato, L.; Langer, B.; Messer, J.; Astruc, D. Incidence and distribution of pathogens in early-onset neonatal sepsis in the era of antenatal antibiotics. Paediatr. Perinat. Epidemiol. 2010, 24, 479–487. [Google Scholar] [CrossRef]
- Schrag, S.J.; Farley, M.M.; Petit, S.; Reingold, A.; Weston, E.J.; Pondo, T.; Hudson Jain, J.; Lynfield, R. Epidemiology of Invasive Early-Onset Neonatal Sepsis, 2005 to 2014. Pediatrics 2016, 138, e20162013. [Google Scholar] [CrossRef]
- Kimberlin, D.W. Red book: 2018–2021 Report of the Committee on Infectious Diseases; American Academy of Pediatrics: Elk Grove, IL, USA, 2018. [Google Scholar]
- Gordon, A.; Isaacs, D. Late onset neonatal Gram-negative bacillary infection in Australia and New Zealand: 1992-2002. Pediatr. Infect. Dis. J. 2006, 25, 25–29. [Google Scholar] [CrossRef]
- Shim, G.H.; Kim, S.D.; Kim, H.S.; Kim, E.S.; Lee, H.-J.; Lee, J.-A.; Choi, C.W.; Kim, E.-K.; Choi, E.H.; Kim, B.I. Trends in epidemiology of neonatal sepsis in a tertiary center in Korea: A 26-year longitudinal analysis, 1980-2005. J. Korean Med. Sci. 2011, 26, 284–289. [Google Scholar] [CrossRef]
- Agarwal, R.; Sankar, J. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: A cohort study. Lancet Glob. Health 2016, 4, e752–e760. [Google Scholar]
- Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.F. Impact of antimicrobial resistance on the treatment and outcome of patients with sepsis. Shock 2008, 30 (Suppl. S1), 23–29. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Kuok, C.M.; Lin, S.Y.; Hsieh, W.S.; Shyu, M.K. Group B streptococcus antimicrobial resistance in neonates born to group B streptococcus-colonized mothers: Single-center survey. J. Obstet. Gynaecol. Res. 2016, 42, 1471–1475. [Google Scholar] [CrossRef]
- Doenhardt, M.; Seipolt, B.; Mense, L.; Winkler, J.L.; Thürmer, A.; Rüdiger, M.; Berner, R.; Armann, J. Neonatal and young infant sepsis by Group B Streptococci and Escherichia coli: A single-center retrospective analysis in Germany-GBS screening implementation gaps and reduction in antibiotic resistance. Eur. J. Pediatr. 2020, 179, 1769–1777. [Google Scholar] [CrossRef]
- Zhu, M.; Jin, Y.; Duan, Y.; He, M.; Lin, Z.; Lin, J. Multi-Drug Resistant Escherichia coli Causing Early-Onset Neonatal Sepsis—A Single Center Experience from China. Infect. Drug Resist. 2019, 12, 3695–3702. [Google Scholar] [CrossRef]
- Al Jarousha, A.M.K.; Jadba, A.H.N.E.; Afifi, A.S.A.; Qouqa, I.A.E. Nosocomial multidrug-resistant Acinetobacter baumannii in the neonatal intensive care unit in Gaza City, Palestine. Int. J. Infect. Dis. 2009, 13, 623–628. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Kumar, A.; Saili, A.; Randhawa, V.S. Distribution, antimicrobial resistance and predictors of mortality in neonatal sepsis. J. Neonatal-Perinat. Med. 2018, 11, 145–153. [Google Scholar] [CrossRef]
- Wei, H.M.; Hsu, Y.L.; Lin, H.C.; Hsieh, T.H.; Yen, T.Y.; Lin, H.C.; Su, B.H.; Hwang, K.P. Multidrug-resistant Acinetobacter baumannii infection among neonates in a neonatal intensive care unit at a medical center in central Taiwan. J. Microbiol. Immunol. Infect. 2015, 48, 531–539. [Google Scholar] [CrossRef]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: A retrospective review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef]
- Tsai, M.H.; Chu, S.M.; Hsu, J.F.; Lien, R.; Huang, H.R.; Chiang, M.C.; Fu, R.H.; Lee, C.W.; Huang, Y.C. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics 2014, 133, e322–e329. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child.-Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, F.R. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement M02-A10 and M07-A08; Clinical and Laboratory Standards Institute (CLSI): Berwyn, PA, USA, 2011; Volume 31. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e0005322. [Google Scholar] [CrossRef]
- Leal, Y.A.; Álvarez-Nemegyei, J.; Velázquez, J.R.; Rosado-Quiab, U.; Diego-Rodríguez, N.; Paz-Baeza, E.; Dávila-Velázquez, J. Risk factors and prognosis for neonatal sepsis in southeastern Mexico: Analysis of a four-year historic cohort follow-up. BMC Pregnancy Childbirth 2012, 12, 48. [Google Scholar] [CrossRef]
- Pérez, R.O.; Lona, J.C.; Quiles, M.; Verdugo, M.; Ascencio, E.P.; Benítez, E.A. Early neonatal sepsis, incidence and associated risk factors in a public hospital in western Mexico. Rev. Chil. Infectol. 2015, 32, 387–392. [Google Scholar] [CrossRef]
- Tijerina-Torres, C.Y.; Rodríguez-Balderrama, I.; Gallegos-Dávila, J.A.; Cavazos-Elizondo, M.; Romero-Rocha, J.A. Incidence and risk factors associated with in-hospital neonatal sepsis. Rev. Medica Inst. Mex. Seguro Social 2011, 49, 643–648. [Google Scholar]
- Murthy, S.; Godinho, M.A.; Guddattu, V.; Lewis, L.E.S.; Nair, N.S. Risk factors of neonatal sepsis in India: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0215683. [Google Scholar] [CrossRef]
- Stoll, B.J.; Puopolo, K.M.; Hansen, N.I.; Sánchez, P.J.; Bell, E.F.; Carlo, W.A.; Cotten, C.M.; D’Angio, C.T.; Kazzi, S.N.J.; Poindexter, B.B.; et al. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the Need for Novel Prevention Strategies. JAMA Pediatr. 2020, 174, e200593. [Google Scholar] [CrossRef]
- McGovern, M.; Kelly, L.; Finnegan, R.; McGrath, R.; Kelleher, J.; El-Khuffash, A.; Murphy, J.; Greene, C.M.; Molloy, E.J. Gender and sex hormone effects on neonatal innate immune function. J. Matern.-Fetal Neonatal Med. 2024, 37, 2334850. [Google Scholar] [CrossRef] [PubMed]
- Zavaleta, H.; Cordero, G.; Edwards, E.M.; Flannery, D.D. Neonatal Sepsis Epidemiology at a Major Public Hospital in Mexico City. Am. J. Perinatol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Kler, N.; Oberoi, J.K.; Fursule, A.; Kumar, A.; Thakur, A. Neonatal Sepsis: Mortality and Morbidity in Neonatal Sepsis due to Multidrug-Resistant (MDR) Organisms: Part 1. Indian J. Pediatr. 2020, 87, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Korang, S.K.; Safi, S.; Nava, C.; Gordon, A.; Gupta, M.; Greisen, G.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic regimens for early-onset neonatal sepsis. Cochrane Database Syst. Rev. 2021, 5, Cd013837. [Google Scholar] [CrossRef]
- Rowe, R.; Soe, A.; Knight, M.; Kurinczuk, J.J. Neonatal admission and mortality in babies born in UK alongside midwifery units: A national population-based case-control study using the UK Midwifery Study System (UKMidSS). Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 194–203. [Google Scholar] [CrossRef]
- van der Plas, E.M.; van den Tweel, X.W.; Geskus, R.B.; Heijboer, H.; Biemond, B.J.; Peters, M.; Fijnvandraat, K. Mortality and causes of death in children with sickle cell disease in the Netherlands, before the introduction of neonatal screening. Br. J. Haematol. 2011, 155, 106–110. [Google Scholar] [CrossRef]
- Ramly, B.; Vavasseur, C.; Knowles, S. Bacteriological Profiles in Early-Onset-Sepsis (EOS) and Late-Onset-Sepsis (LOS) in Neonates. Ir. Med. J. 2022, 115, 648. [Google Scholar]
- Stoll, B.J.; Hansen, N.I.; Sánchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., 3rd; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef]
- Lona Reyes, J.C.; Verdugo Robles, M.; Pérez Ramírez, R.O.; Pérez Molina, J.J.; Ascencio Esparza, E.P.; Benítez Vázquez, E.A. Etiology and antimicrobial resistance patterns in early and late neonatal sepsis in a Neonatal Intensive Care Unit. Arch. Argent. Pediatr. 2015, 113, 317–323. [Google Scholar] [CrossRef]
- Stoll, B.J.; Gordon, T.; Korones, S.B.; Shankaran, S.; Tyson, J.E.; Bauer, C.R.; Fanaroff, A.A.; Lemons, J.A.; Donovan, E.F.; Oh, W.; et al. Early-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network. J. Pediatr. 1996, 129, 72–80. [Google Scholar] [CrossRef]
- Moles, L.; Gómez, M.; Moroder, E.; Bustos, G.; Melgar, A.; Del Campo, R.; Rodríguez, J.M. Staphylococcus epidermidis in feedings and feces of preterm neonates. PLoS ONE 2020, 15, e0227823. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Speer, C.P. The role of Staphylococcus epidermidis in neonatal sepsis: Guarding angel or pathogenic devil? Int. J. Med. Microbiol. 2014, 304, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Speer, C.P.; Glaser, K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018, 9, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.L.; Fey, P.D.; Rupp, M.E. Coagulase-negative staphylococcal infections. Infect. Dis. Clin. N. Am. 2009, 23, 73–98. [Google Scholar] [CrossRef]
- Chaves, F.; García-Alvarez, M.; Sanz, F.; Alba, C.; Otero, J.R. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J. Clin. Microbiol. 2005, 43, 4877–4879. [Google Scholar] [CrossRef]
- Subramanya, S.H.; Amberpet, R.; Chaudhary, D.; Nayak, N.; Padukone, S.; Bairy, I.; Gokhale, S. Neonatal sepsis due to glycopeptide resistant Enterococcus faecium from colonized maternal gut- rare case evidence. Antimicrob. Resist. Infect. Control. 2019, 8, 29. [Google Scholar] [CrossRef]
- Shantala, G.B.; Nagarathnamma, T.; Pooja, D.R.; Harsha, T.R.; Karthik, R. Neonatal septicaemia caused by vancomycin resistant enterococcus faecium-a case report. J. Clin. Diagn. Res. 2014, 8, Dd03–Dd04. [Google Scholar] [CrossRef]
- Mohsen, L.; Ramy, N.; Saied, D.; Akmal, D.; Salama, N.; Abdel Haleim, M.M.; Aly, H. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrob. Resist. Infect. Control. 2017, 6, 63. [Google Scholar] [CrossRef]
- Solomon, S.; Akeju, O.; Odumade, O.A.; Ambachew, R.; Gebreyohannes, Z.; Van Wickle, K.; Abayneh, M.; Metaferia, G.; Carvalho, M.J.; Thomson, K.; et al. Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS ONE 2021, 16, e0255410. [Google Scholar] [CrossRef]
- Lamba, M.; Sharma, D.; Sharma, R.; Vyas, A.; Mamoria, V. To study the profile of Candida isolates and antifungal susceptibility pattern of neonatal sepsis in a tertiary care hospital of North India. J. Matern.-Fetal Neonatal Med. 2021, 34, 2655–2659. [Google Scholar] [CrossRef]
- Autmizguine, J.; Tan, S.; Cohen-Wolkowiez, M.; Cotten, C.M.; Wiederhold, N.; Goldberg, R.N.; Adams-Chapman, I.; Stoll, B.J.; Smith, P.B.; Benjamin, D.K., Jr. Antifungal Susceptibility and Clinical Outcome in Neonatal Candidiasis. Pediatr. Infect. Dis. J. 2018, 37, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Quispe, A.M.; Soza, G.; Ramos Chirinos, M.; Quiroz, D.; Pons, M.J. Multidrug resistance bacteremia in neonates and its association with late-onset sepsis and Coagulase-negative Staphylococci. J. Infect. Dev. Ctries. 2020, 14, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Rattani, S.; Farooqi, J.; Hussain, A.S.; Jabeen, K. Spectrum and Antifungal Resistance of Candidemia in Neonates With Early- and Late-Onset Sepsis in Pakistan. Pediatr. Infect. Dis. J. 2021, 40, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Ben Lakhal, H.; M’Rad, A.; Naas, T.; Brahmi, N. Antimicrobial Susceptibility among Pathogens Isolated in Early- versus Late-Onset Ventilator-Associated Pneumonia. Infect. Dis. Rep. 2021, 13, 401–410. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Caruso, G. Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. J. AOAC Int. 2018, 101, 916–922. [Google Scholar] [CrossRef]
- Hollis, A.; Ahmed, Z. Preserving antibiotics, rationally. N. Engl. J. Med. 2013, 369, 2474–2476. [Google Scholar] [CrossRef]
- Bassetti, M.; De Waele, J.J.; Eggimann, P.; Garnacho-Montero, J.; Kahlmeter, G.; Menichetti, F.; Nicolau, D.P.; Paiva, J.A.; Tumbarello, M.; Welte, T.; et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med. 2015, 41, 776–795. [Google Scholar] [CrossRef]
- Vigani, A.G.; Oliveira, A.M.; Bratfich, O.J.; Stucchi, R.S.; Moretti, M.L. Clinical, epidemiological, and microbiological characteristics of bacteremia caused by high-level gentamicin-resistant Enterococcus faecalis. Braz. J. Med. Biol. Res. 2008, 41, 890–895. [Google Scholar] [CrossRef]
- Permana, P.B.D.; Widodo, A.D.W.; Setyaningtyas, A.; Wahyunitisari, M.R. Factors Associated With Culture-proven Neonatal Sepsis and Resistance to First-line Antibiotics in Indonesia. Pediatr. Infect. Dis. J. 2024, 43, 56–62. [Google Scholar] [CrossRef]
Epidemiological Traits | n = 314 (%) |
---|---|
Sex | |
Male | 182 (58.0) |
Female | 129 (41.0) |
Non-determined | 3 (1.0) |
Birth weight (gr) | |
>2500 | 115 (36.6) |
1500–2499 | 67 (21.3) |
1000–1499 | 70 (22.3) |
<999 | 62 (19.7) |
Week gestation (WG) | |
Full-term >39 | 42 (13.4) |
Early-term 37–38 | 53 (16.9) |
Late preterm 34–36 | 61 (19.4) |
Moderate preterm 31–33 | 45 (14.3) |
Very preterm 29–30 | 43 (13.7) |
Extremely preterm <28 | 70 (22.3) |
Birth type | |
Vaginal birth | 134 (42.7) |
Cesarean section | 180 (57.3) |
APGAR score 1st minute of life (points) | |
>7 | 185 (58.9) |
4 to 6 | 97 (30.9) |
<3 | 32 (10.2) |
Perinatal risk factors | |
Urinary tract infection | 109 (34.7) |
Unexpected birth | 14 (4.5) |
Chorioamnionitis | 13 (4.1) |
Respiratory infection | 1 (0.3) |
Days hospitalized | |
0–49 | 171 (54.4) |
50–99 | 80 (25.4) |
100–199 | 47 (14.9) |
>200 | 16 (5.1) |
Mother’s age (years) | |
<15 | 3 (0.9) |
16–25 | 193 (61.4) |
>26 | 118 (37.5) |
Sepsis classification | |
Late-onset | 205 (65.3) |
Early-onset | 109 (34.7) |
Mechanic ventilation | 129 (44.9) |
Stroke | 45 (15.7) |
Mortality | 40 (12.7) |
Neonate symptoms | n = 314 (%) |
Respiratory difficulty | 224 (71.3) |
Tachycardia | 81 (25.8) |
Fever | 64 (20.4) |
Reticulated/marble coloration | 61 (19.4) |
Jaundice | 57 (18.2) |
Tachypnea | 46 (14.6) |
Capillary refill > 2 s | 44 (14.0) |
Apnea | 26 (8.3) |
Pallor | 25 (8.0) |
Low average blood pressure | 24 (7.6) |
Cyanosis | 20 (6.4) |
Hypothermia | 20 (6.4) |
Bradycardia | 18 (5.7) |
Abdominal distension | 16 (5.1) |
Bradypnea | 12 (3.8) |
Vomit | 5 (1.6) |
Convulsive crisis | 5 (1.6) |
Neonate laboratory data | Mean (S.D.) |
Hemoglobin (gr/dL) | 13.73 (±3.24) |
Hematocrit (%) | 40.3 (±9.32) |
Total leukocytes (×103 µL) | 12.36 (±6.29) |
Neutrophils (×103 µL) | 6.22 (±4.83) |
Lymphocytes (×103 µL) | 3.62 (±2.04) |
Monocytes (×103 µL) | 1.67 (±1.3) |
Eosinophils (×103 µL) | 0.35 (±0.33) |
Platelets (×103 µL) | 192 (±148) |
Mean platelet volume (fL) | 10.8 (±9.3) |
Procalcitonin (ng/dL) | 10.1 (±25.23) |
Total bilirubin (mg/dL) | 3.98 (±4.11) |
Direct bilirubin (mg/dL) | 1.7 (±2.49) |
Indirect bilirubin (mg/dL) | 1.8 (±3.05) |
Creatinine (mg/dL) | 0.43 (±2.49) |
Urea (mg/dL) | 33.76 (±26.96) |
ALT/TGP (U/L) | 54.9 (±70.27) |
AST/TGO (U/L) | 77.98 (±124.13) |
Bacteria | n = (%) |
---|---|
n = 242 (77) | |
Gram-positive | 171 (70) |
Gram-negative | 71 (30) |
Bacteria species | |
Staphylococcus epidermidis | 61 (25.2) |
Staphylococcus hominis | 26 (10.7) |
Staphylococcus haemolyticus | 25 (10.3) |
Pseudomonas aeruginosa | 17 (7.0) |
Escherichia coli | 16 (6.6) |
Klebsiella pneumoniae | 15 (6.1) |
Staphylococcus aureus | 15 (6.1) |
Serratia marcescens | 11 (4.5) |
Kocuria kristinae | 7 (2.8) |
Coagulase-negative Staphylococci | 5 (2.0) |
Enterococcus faecium | 5 (2.0) |
Streptococcus agalactiae | 4 (1.6) |
Micrococcus luteus | 4 (1.6) |
Enterococcus faecalis | 4 (1.6) |
Staphylococcus lentus | 3 (1.2) |
Aerococcus viridans | 3 (1.2) |
Stenotrophomonas maltophilia | 2 (0.8) |
Burkholderia cepacia | 2 (0.8) |
Proteus mirabilis | 2 (0.8) |
Staphylococcus warneri | 2 (0.8) |
Staphylococcus lugdunensis | 1 (0.4) |
Enterobacter cloacae | 1 (0.4) |
Staphylococcus saprophyticus | 1 (0.4) |
Leuconostoc pseudomesenteroides | 1 (0.4) |
Acinetobacter haemolyticus | 1 (0.4) |
Elizabethkingia meningoseptica | 1 (0.4) |
Achromobacter xylosoxidans | 1 (0.4) |
Kytococcus sedentarius | 1 (0.4) |
Kocuria rosea | 1 (0.4) |
Citrobacter koseri | 1 (0.4) |
Staphylococcus capitis | 1 (0.4) |
Acinetobacter baumannii | 1 (0.4) |
Kocuria rhizophila | 1 (0.4) |
Fungus | n = 72 (23) |
Candida albicans | 31 (43.0) |
Candida parapsilosis | 26 (36.1) |
Candida guilliermondii | 5 (7.0) |
Cryptococcus laurentii | 4 (5.6) |
Candida tropicalis | 3 (4.1) |
Candida glabrata | 2 (2.8) |
Candida ciferrii | 1 (1.4) |
Total n: 314. |
Microorganisms | Early-Onset | Late-Onset | p-Value |
---|---|---|---|
n (%) | n (%) | ||
n = 109 (34.7) | n = 205 (65.3) | ||
Gram-positive | 89 (81.6) * | 82 (40) | 0.0001 |
Gram-negative | 18 (16.5) | 53 (25.8) | 0.059 |
Fungus | 2 (1.83) | 70 (34.1) * | 0.0001 |
Bacteria species | |||
Staphylococcus epidermidis | 22 (20.1) | 39 (19.0) | 0.804 |
Pseudomonas aeruginosa | 0 (0.0) | 17 (8.3) | - |
Staphylococcus haemolyticus | 12 (11.0) | 13 (6.3) | 0.147 |
Staphylococcus hominis | 15 (13.7) * | 11 (5.3) | 0.01 |
Klebsiella pneumoniae | 4 (3.6) | 11 (5.3) | 0.502 |
Escherichia coli | 7 (6.4) | 9 (4.4) | 0.435 |
Serratia marcescens | 3 (2.7) | 8 (3.9) | 0.607 |
Staphylococcus aureus | 8 (7.3) | 7 (3.4) | 0.120 |
Kocuria kristinae | 3 (2.7) | 4 (1.9) | 0.638 |
Coagulase-negative Staphylococci | 3 (2.7) | 2 (1.0) | 0.226 |
Enterococcus faecalis | 2 (1.8) | 2 (1.0) | 0.511 |
Enterococcus faecium | 4 (3.6) * | 1 (0.5) | 0.032 |
Aerococcus viridans | 2 (1.8) | 1 (0.5) | 0.242 |
Streptococcus agalactiae | 4 (3.6) | 0 (0.0) | - |
Micrococcus luteus | 4 (3.6) | 0 (0.0) | - |
Others | 14 (12.8) | 10 (4.8) | - |
Fungus | |||
Candida albicans | 1 (0.9) | 30 (14.6) | 0.0001 |
Candida parapsilosis | 0 (0.0) | 26 (12.6) | - |
Candida guilliermondii | 0 (0.0) | 5 (2.4) | - |
Cryptococcus laurentii | 0 (0.0) | 4 (1.9) | - |
Candida tropicalis | 0 (0.0) | 3 (1.4) | - |
Others | 1 (0.9) | 2 (1.0) | - |
Category | Total Microorganisms | Bacteria n = (%) | Fungi n = (%) | p-Value |
---|---|---|---|---|
n = 287 (%) | n = 220 (76.6) | n = 67 (23.4) | ||
Resistant to any antimicrobial | 251 (87.4) | 206 (93.6) * | 45 (67.1) | 0.0001 |
MDR | 151 (52.6) | 143 (65.0) * | 8 (11.9) | 0.0001 |
XDR | 31 (10.8) | 12 (5.4) | 19 (28.3) * | 0.0001 |
PDR | 16 (5.5) | 13 (5.9) | 3 (4.4) | 0.654 |
Resistance to antimicrobials | ||||
0 | 36 (12.5) | 14 (6.3) | 22 (32.8) * | 0.0001 |
1 | 25 (8.7) | 16 (7.2) | 9 (13.4) | 0.22 |
2 | 26 (9.0) | 9 (4.0) | 17 (25.3) * | 0.0001 |
3 | 27 (9.4) | 18 (8.1) | 9 (13.4) | 0.356 |
4 | 16 (5.5) | 13 (5.9) | 3 (4.4) | 0.604 |
5 | 30 (10.4) | 24 (10.9) | 6 (8.9) | 0.647 |
6 | 22 (7.6) | 21 (9.5) * | 1 (1.4) | 0.03 |
7 | 20 (6.9) | 20 (9.1) | - | - |
8 | 20 (6.9) | 20 (9.1) | - | - |
9 | 15 (5.2) | 15 (6.8) | - | - |
10 | 17 (5.9) | 17 (7.2) | - | - |
11 | 6 (2.0) | 6 (2.7) | - | - |
12 | 13 (4.5) | 13 (5.9) | - | - |
13 | 4 (1.3) | 4 (1.8) | - | - |
14 | 5 (1.7) | 5 (2.2) | - | - |
15 | 3 (1.0) | 3 (1.3) | - | - |
16 | 2 (0.7) | 2 (0.9) | - | - |
Univariate Model | ||||
Neonate Characteristic | Type Resistance Associated | OR | 95% CI | p-Value |
Birth Weight (gr) | ||||
1000–1499 | XDR | 2.44 | 1.13–5.40 | 0.024 |
<999 | XDR | 4.62 | 2.12–10.05 | <0.001 |
PDR | 3.35 | 1.19–9.42 | 0.022 | |
Week gestation (WG) | ||||
Very preterm 29–30 | XDR | 2.96 | 1.23–6.97 | 0.014 |
Extremely preterm <28 | PDR | 3.75 | 1.35–10.4 | 0.011 |
Birth type | ||||
Cesarean section | PDR | 11.73 | 1.52–90.17 | 0.018 |
APGAR score 1st minute life (points) | ||||
4 to 6 | PDR | 10.71 | 1.34–85.50 | 0.025 |
<3 | PDR | 5.41 | 1.71–17.04 | 0.004 |
Mechanic ventilation | PDR | 3.95 | 1.24–12.55 | 0.02 |
Days hospitalized | ||||
100–199 | XDR | 4.85 | 2.18–10.31 | <0.001 |
Mother’s age (years) | ||||
>26 | XDR | 2.45 | 1.15–5.23 | 0.02 |
Neonate symptoms | ||||
Tachycardia | PDR | 4.76 | 1.67–13.58 | 0.004 |
Low average blood pressure | PDR | 6.13 | 1.97–20.14 | 0.002 |
Neonate laboratory data | ||||
Low hemoglobin | XDR | 2.28 | 1.08–3.47 | <0.001 |
Low hematocrit | XDR | 6.44 | 3.03–9.86 | <0.001 |
Low platelets | XDR | 1.37 | 0.71–2.02 | <0.001 |
High AST/TGO | XDR | 64.7 | 13.3–116.2 | 0.014 |
Multivariate model | ||||
Neonate characteristics | Type resistance associated | OR | 95% CI | p-Value |
Birth weight (gr) | ||||
1000–1499 | XDR | 5.81 | 1.46–23.11 | 0.012 |
<999 | XDR | 9.65 | 2.75–33.91 | <0.001 |
Univariate Model | |||
Neonate Characteristic | OR | 95% CI | p-Value |
Epidemiological traits | |||
Birth weight (gr) | |||
1000–1499 | 2.58 | 1.42–5.75 | 0.003 |
Mechanic ventilation | 6.98 | 3.10–15.70 | <0.001 |
Stroke | 8.75 | 4.21–18.18 | <0.001 |
Perinatal risk factors | |||
Unexpected birth | 6.58 | 2.18–19.87 | 0.001 |
Mother’s age (years) | |||
>26 | 2.07 | 1.07–3.99 | 0.29 |
Neonate symptoms | |||
Respiratory difficulty | 3.48 | 1.30–9.07 | 0.013 |
Tachycardia | 1.86 | 0.95–3.67 | 0.07 |
Capillary refill >2 s | 3.18 | 1.49–6.79 | 0.003 |
Low average blood pressure | 2.82 | 1.08–7.35 | 0.033 |
Convulsive crisis | 24.92 | 2.71–228.8 | 0.004 |
Neonate laboratory data | |||
Low platelets | 61.18 | 14.1–108.1 | 0.011 |
High mean platelet volume | 1.63 | 1.17–2.11 | <0.001 |
High procalcitonin | 19.94 | 10.28–29.59 | <0.001 |
High total bilirubin | 1.78 | 0.28–3.28 | 0.02 |
High direct bilirubin | 2.28 | 1.41–3.04 | <0.001 |
High urea | 18.4 | 7.94–28.86 | 0.001 |
High AST/TGO | 106.9 | 63.2–150.7 | <0.001 |
Multivariate model | |||
Neonate characteristic | OR | 95% CI | p-Value |
Mechanic ventilation | 6.05 | 2.18–16.73 | 0.001 |
Stroke | 4.0 | 1.65–9.69 | 0.002 |
Unexpected birth | 16.96 | 4.23–67.96 | <0.001 |
Convulsive crisis | 38.89 | 2.66–568.54 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angulo-Zamudio, U.A.; Velazquez-Meza, M.L.; Martinez-Garcia, J.J.; Leon-Sicairos, N.; Velazquez-Roman, J.; Flores-Villaseñor, H.; Leon-Sicairos, C.; Martínez-Villa, F.A.; Canizalez-Roman, A. Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance and Mortality in a Tertiary Hospital in Mexico: A Retrospective Observational Study. Pathogens 2025, 14, 588. https://doi.org/10.3390/pathogens14060588
Angulo-Zamudio UA, Velazquez-Meza ML, Martinez-Garcia JJ, Leon-Sicairos N, Velazquez-Roman J, Flores-Villaseñor H, Leon-Sicairos C, Martínez-Villa FA, Canizalez-Roman A. Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance and Mortality in a Tertiary Hospital in Mexico: A Retrospective Observational Study. Pathogens. 2025; 14(6):588. https://doi.org/10.3390/pathogens14060588
Chicago/Turabian StyleAngulo-Zamudio, Uriel A., Maria Luisa Velazquez-Meza, Jesus J. Martinez-Garcia, Nidia Leon-Sicairos, Jorge Velazquez-Roman, Hector Flores-Villaseñor, Claudia Leon-Sicairos, Francisco A. Martínez-Villa, and Adrian Canizalez-Roman. 2025. "Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance and Mortality in a Tertiary Hospital in Mexico: A Retrospective Observational Study" Pathogens 14, no. 6: 588. https://doi.org/10.3390/pathogens14060588
APA StyleAngulo-Zamudio, U. A., Velazquez-Meza, M. L., Martinez-Garcia, J. J., Leon-Sicairos, N., Velazquez-Roman, J., Flores-Villaseñor, H., Leon-Sicairos, C., Martínez-Villa, F. A., & Canizalez-Roman, A. (2025). Characteristics of Neonates with Sepsis Associated with Antimicrobial Resistance and Mortality in a Tertiary Hospital in Mexico: A Retrospective Observational Study. Pathogens, 14(6), 588. https://doi.org/10.3390/pathogens14060588